
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

This thesis done in cooperation with the MOVES Institute.
Approved for public release; distribution is unlimited.

ANALYZING ANTI-TERRORIST TACTICAL
EFFECTIVENESS OF PICKET BOATS FOR FORCE

PROTECTION OF NAVY SHIPS USING X3D GRAPHICS
AND AGENT-BASED SIMULATION

by

James William Harney

March 2003
 Thesis Advisor: Donald P. Brutzman
 Thesis Co-advisor: Curtis L. Blais
 Thesis Co-advisor: Gordon Schacher
 Thesis Co-advisor: John Hiles

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2003

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Analyzing Anti-Terrorist Tactical Effectiveness of Picket Boats for Force
Protection of Navy Ships Using X3D Graphics and Agent-Based Simulation
6. AUTHOR
James William Harney

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Space and Naval Warfare Systems Center, San Diego California (SSC San
Diego), Defense Modeling and Simulation Office (DMSO)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE
 A

13. ABSTRACT
 Despite the many advances achieved within both Modeling and Simulation and Information Technology over the past
several decades, practical application of such technology remains under-utilized by operational units in the United States Navy.
Furthermore, when such technology has been deployed in the last decade it has been to exercise operator proficiency or
increase C4I battlespace awareness. Few tools have allowed operational warfighters to run ‘what-if’ simulation scenarios to
aid in development of tactical plans for executing published doctrine.
 The approach taken in this thesis is to select an exemplar warfare area, in this case Anti-Terrorism and Force
Protection for Navy ships, and through research and development to identify, develop, and deploy the necessary modeling and
simulation (M & S) technologies to demonstrate a prototypical planning tool that can be used by today’s deployed warfighter.
All research and work is conducted in a web-based, ‘user-centric’ fashion utilizing a combination of user-driven and agent-
based control of entities for simulation iterations, along with various open source technologies which include Extensible 3D
Graphics (X3D), Scalable Vector Graphics (SVG), and Extensible Markup Language (XML). Conventions are demonstrated
for the integration of the many academic disciplines utilized during this research to achieve automatic generation of tactically
significant scenarios. In order to give the end-user the greatest insight towards potential drawbacks in the tactical planning
against surface-borne terrorist threats, various 2D and 3D media provide both real-time and non-real time scenario playback.

The result of this work is a fully integrated, prototypical, Java-based application that demonstrates how various
Open-Source, web-based technologies can be applied in order to provide the tactical operator with tools to aid in Force
Protection planning. Scenarios can be auto generated, viewed, analyzed, and manipulated by end users with little to no
computer experience necessary beyond requirements for operation of a desktop personal computer (PC) in the Information
Technology for the 21st Century (IT-21) environment at sea. This approach has broad applicability to improve the tactical
awareness and defensive posture of ships defending against terrorist attacks in port.

15. NUMBER OF
PAGES

252

14. SUBJECT TERMS
Virtual Environments, Extensible 3D Graphics, X3D, Scalable Vector Graphics, SVG, Force
Protection, Anti-Terrorism, Extensible Markup Language, XML, Java, Scenario Generation, DIS-
Java-VRML, Extensible Modeling and Simulation Framework (XMSF), SAVAGE, Distributed
Interactive Simulation, NPSNET-V

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

This thesis done in cooperation with the MOVES Institute.

Approved for public release; distribution is unlimited

ANALYZING ANTI-TERRORIST TACTICAL EFFECTIVENESS OF PICKET
BOATS FOR FORCE PROTECTION OF NAVY SHIPS USING X3D GRAPHICS

AND AGENT-BASED SIMULATION

James W. Harney
Lieutenant, United States Navy

B.S., United States Naval Academy, 1996

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2003

Author: James William Harney

Approved by: Donald P. Brutzman,

Thesis Advisor

Approved by: Curtis L. Blais,
Thesis Co-advisor

Approved by: Gordon Schacher,

Thesis Co-advisor

Approved by: John Hiles,

Thesis Co-advisor

Approved by: Peter Denning,

Chairman, Department of Computer Science

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

 ABSTRACT

 Despite the many advances achieved within both Modeling and Simulation and

Information Technology over the past several decades, practical application of such

technology remains under-utilized by operational units in the United States Navy.

Furthermore, when such technology has been deployed in the last decade it has been to

exercise operator proficiency or increase C4I battlespace awareness. Few tools have

allowed operational warfighters to run ‘what-if’ simulation scenarios to aid in

development of tactical plans for executing published doctrine.

 The approach taken in this thesis is to select an exemplar warfare area, in this case

Anti-Terrorism and Force Protection for Navy ships, and through research and

development to identify, develop, and deploy the necessary modeling and simulation (M

& S) technologies to demonstrate a prototypical planning tool that can be used by today’s

deployed warfighter. All research and work is conducted in a web-based, ‘user-centric’

fashion utilizing a combination of user-driven and agent-based control of entities for

simulation iterations, along with various open source technologies which include

Extensible 3D Graphics (X3D), Scalable Vector Graphics (SVG), and Extensible Markup

Language (XML). Conventions are demonstrated for the integration of the many

academic disciplines utilized during this research to achieve automatic generation of

tactically significant scenarios. In order to give the end-user the greatest insight towards

potential drawbacks in the tactical planning against surface-borne terrorist threats,

various 2D and 3D media provide both real-time and non-real time scenario playback.

The result of this work is a fully integrated, prototypical, Java-based application

that demonstrates how various Open-Source, web-based technologies can be applied in

order to provide the tactical operator with tools to aid in Force Protection planning.

Scenarios can be auto generated, viewed, analyzed, and manipulated by end users with

little to no computer experience necessary beyond requirements for operation of a

desktop personal computer (PC) in the Information Technology for the 21st Century (IT-

21) environment at sea. This approach has broad applicability to improve the tactical

awareness and defensive posture of ships defending against terrorist attacks in port.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM STATEMENT ...1
B. OVERVIEW...1
C. MOTIVATION ..3
D. OBJECTIVES ..4
E. THESIS ORGANIZATION..4

II. BACKGROUND AND RELATED WORK ..7
A. INTRODUCTION..7
B. ROLE OF 3D VISUALIZATION IN MODELING AND

SIMULATIONTECHNOLOGY ..7
C. OPEN-SOURCE CONCEPTS AND TECHNOLOGIES7
D. EXTENSIBLE MARKUP LANGUAGE (XML)..9
E. EXTENSIBLE STYLESHEET LANGUAGE FOR

TRANSFORMATIONS (XSLT) ..10
F. DESIGN PATTERNS..11

1. Mediator..12
2. Observer..12
3. Singleton..12
4. Delegation ...13
5. Interface ..13

G. X3D GRAPHICS AND THE VIRTUAL REALITY MODELING
LANGUAGE ..13

H. SCALABLE VECTOR GRAPHICS (SVG)..14
I. THE JAVA PROGRAMMING LANGUAGE..16

1. JAVA 3D...16
2. JDOM..16

J. X3D, ECMASCRIPT, AND THE JAVA PROGRAMMING
LANGUAGE ..16

K. DIS-JAVA-VRML ...17
L. XJ3D OPEN SOURCE PROJECT ..17
M. NPSNET-V..18
N. AGENT-BASED SIMULATION ...18

1. Multi-Agent Systems..18
2. NPS-Developed Composite-Agent Architecture19

O. EXTENSIBLE MODELING AND SIMULATION FRAMEWORK
(XMSF)..20

P. SUMMARY ..20

III. OVERVIEW OF PROBLEM ...21
A. INTRODUCTION..21
B. PROBLEM STATEMENT ...21

viii

C. PROPOSED SOLUTION AND RESEARCH FOCUS21
D. DESIGN CONSIDERATIONS...23

IV. DEVELOPING SCENE COMPONENTS...25
A. INTRODUCTION..25
B. DESIGN AND IMPLEMENTATION OF THE DDG-51 X3D

MODEL ..25
C. DESIGN AND IMPLEMENTATION OF THE USS COLE

TERRORISTATTACK X3D MODEL..32
1. Constructing the Geography and Pier ...32
2. Entity Construction ...37
3. Explosion Modeling ...38
4. Entity Track Animation ..41
5. Dynamic Scene Playback...42

D. X3D CONSTRUCTION OF OTHER LOCALES......................................43
1. Naval Base, Port Hueneme..43
2. Construction of Naval Base Pearl Harbor.......................................45

E. SUMMARY ..49

V. X3D AND BASIC PHYSICS MODELING...51
A. INTRODUCTION..51
B. KINEMATICS ...51
C. DIS-JAVA-VRML ...56

VI. INTERFACE DESIGN AND IMPLEMENTATION PROCESS59
A. INTRODUCTION..59
B. NEEDS ANALYSIS...59

1. Judgment Criteria..60
2. Problem Approach...61

C. PROJECT GOAL ..61
D. USER ANALYSIS..62

1. User Characteristics...62
2. User Skill Levels...62
3. Conclusion ..63

E. TASK ANALYSIS ...63
F. CONCEPTUAL DESIGN ...64
G. VISUAL DESIGN ..65
H. USABILITY ANALYSIS ..70
I. USABILITY TEST SUBJECTS ...71
J. DATA COLLECTION AND JUDGEMENT CRITERIA.........................72
K. USER INTERFACE REDESIGN ..86
L. UI RESULTS AT COMPLETION OF THE FIRST ROUND OF

USABILITY TESTING...88
M. SUMMARY ..92

VII. ANTI-TERRORIST/FORCE PROTECTION MODEL DESIGN94
A. INTRODUCTION..94
B. SCENARIO OBJECT MODEL DESIGN...94
C. REPRESENTING SCENARIOS IN XML..97

ix

D. VISUAL DISPLAY VS OFF-SCREEN MODEL
REPRESENTATIONS ..98

E. DYNAMIC SCENARIO GENERATION UTILIZING XML AND
XSLT ...100

F. SUMMARY ..104

VIII. AGENT DESIGN AND IMPLEMENTATION ..106
A. INTRODUCTION..106
B. USING A MULTI-AGENT SYSTEM TO GAIN INSIGTS

ONTACTICAL LEVEL OF WAR...106
C. ANALYSIS FOR APPLYING AGENT TECHNIQUES107

1. Environment...107
2. Objects ..108
3. Agents..108
4. Relationships ..110
5. Laws ..110

D. REPRESENTATION ..111
E. APPROACH...111
F. SUMMARY ..115

IX. EXEMPLAR USE CASES..116
A. INTRODUCTION..116
B. APPLICATION DEPLOYMENT AND UPDATES.................................116

1. Heavy-weight Client-Side Applications ...116
1.0 JNLP and Web-Start...116
2.0 Applet-Based Installation ...117

C. SCENARIO CREATION..119
D. SCENARIO VIEWING OPTIONS..127

1. 3D View...128
2. Non-rendering Scenario Runs with Statistics131

E. USING PREVIOUSLY CONFIGURED SCENARIOS...........................132
F. SUMMARY ..133

X. APPLICATION TOWARDS U.S. NAVY TRAINING, EDUCATION AND
EXPERIMENATION..134
A. INTRODUCTION..134
B. LIMITED OBJECTIVE EXPERIMENTS ...134
C. LEVERAGING EMERGING WEB-BASED VISUALIZATION FOR

TRAINING AND EDUCATION..138
D. SUMMARY ..141

XI. CONCLUSIONS AND RECOMMENDATIONS...142
A. GENERAL THESIS CONCLUSIONS..142
B. SPECIFIC CONCLUSIONS AND RESULTS..142

1. Easy, Dynamic Scene Creation ...142
2. Real-Time Scene Interaction...142
3. Laboratory for Experimentation..143
4. Applications for Navy Training and Education............................143

C. RECOMMENDATIONS FOR FUTURE WORK....................................143

x

1. Coordinated Development with the U.S. Navy AT/FP
Schoolhouse ..143

2. Modification for Use with the Spartan Unmanned Surveillance
Vessel...144

3. Continued Applied Autonomous Agent Research144

APPENDIX A. ACRONYMNS AND ABBREVIATIONS ..146

APPENDIX B. MANUAL CONFIGURATION TASK LISTING..............................150

APPENDIX C. MANUAL CONFIGURATION QUESTIONNAIRE152

APPENDIX D. WIZARD CONFIGURATION TASK LISTING...............................154

APPENDIX E. WIZARD CONFIGURATION QUESTIONNAIRE156

APPENDIX F. USER CHOICE CONFIGURATION TASK LIST............................158

APPENDIX G. USER CHOICE CONFIGURATION QUESTIONNAIRE...............160

APPENDIX H. MISCELLANEOUS FUNCTION TASK LISTING...........................162

APPENDIX I. MISCELLANEOUS FUNCTION TASK QUESTIONNAIRE..........164

APPENDIX J. JAVA PROGRAMMING UTILITIES ..166
A. INTRODUCTION..166
B. SCREEN CAPTURING AND BASIC IMAGE MANIPULATION IN

J2SDK1.4.1_X ..166
C. PRINTING IN JAVA ..173
D. SUMMARY ..175

APPENDIX K. APPLYING XSLT TECHNOLOGIES IN THE JAVA
PROGRAMMING LANGUAGE...176
A. INTRODUCTION..176
B. UTILIZING XSLT IN CLIENT-SIDE JAVA ..176
C. JAVA AND XSLT EXAMPLE...176
D. SUMMARY ..180

APPENDIX L. JAVA APPLICATION INSTALLER CREATION WITH
ZEROG.COM INSTALL ANYWHERE...182
A. INTRODUCTION..182
B. MOTIVATION FOR USE ..182
C. CREATING THE INSTALLATION APPLICATION............................182
D. INSTALL ANYWHERE AVAILABILITY ..198
E. SUMMARY ..199

APPENDIX M. LEVERAGING JAVA 2D FOR BASIC COLLISION
DETECTION..200
A. INTRODUCTION..200
B. REPRESENTING GEOMETRY OFFSCREEN......................................200
C. SUMMARY ..204

APPENDIX N. LEVERAGING XSLT FOR X3D GRAPHICS DEPLOYMENT
FOR HANDHELD DEVICES ..206

xi

A. INTRODUCTION..206
B. REAL-TIME 3D ON HAND HELD DEVICES..206
C. LEVERAGING XSLT...211
D. OTHER MILITARY USES ..212
E. FUTURE RESEARCH..212
F. SUMMARY ..212

APPENDIX O. APPLICATION DISTRIBUTION AND SOURCE CODE ACCESS..214

LIST OF REFERENCES..216

INITIAL DISTRIBUTION LIST ...226

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF FIGURES

Figure 1. External Damage on USS COLE after Terrorist Attack in Aden Harbor,
Yemen October 12, 2000. 17 Individuals were killed in action, 39 were
wounded in action. [JMOCN 2002]...3

Figure 2. Simple HTML Snippet with no structure to the data contained.9
Figure 3. Sample XML snippet with same information as in the unstructured HTML

example but defined in a way that semantically significant data can be
formally validated, accessed and manipulated...9

Figure 4. X3D Graphics Depiction of the Hypothetical XML Document from Figure
3..11

Figure 5. Original View of Batik3d.svg from http://xml.apache.org/batik/....................15
Figure 6. Example of maintaining image quality while zooming in on Batik3D.svg

in the Adobe SVG Viewer plug-in loaded in Internet Explorer 6.0.15
Figure 7. Example of Loss of Quality While zooming-in on a rasterized version of

the batik3d image (png depicted)...15
Figure 8. Multi-Agent System originally from [Ferber 1999] and [Osborne 2002]19
Figure 9. Composite agent architecture from [Osborne 2002]..20
Figure 10. Depiction of DDG-51, Arleigh Burke class destroyer from the FAS web

site http://www.fas.org/man/dod-101/sys/ship/ddg-51.htm. (accessed
March 2003)...26

Figure 11. Depicts one of two images utilized for 3D creation of Propellers and
Shafting for the DDG-51 X3D model from http://www.usni.org [USNI
2001] (accessed March 2003) ..27

Figure 12. Depicts the X3D definition of 1 propeller blade and an example of the re-
use of the single definition...28

Figure 13. Screen snapshot of Propellers.wrl rendered in the ParallelGrahics Cortona
VRML97 client plugin in Internet Explorer v6.0. File available online at
http://web.nps.navy.mil/~brutzman/Savage/Ships/DDG-ArlieghBurke-
UnitedStates/Propellers.wrl (accessed February 2003)29

Figure 14. FlightDeck.wrl component from the Arleigh Burke Class X3D model.30
Figure 15. Screen Snapshot of the complete Arleigh Burke Class X3D Model.31
Figure 16. Screen Capture of the RHIBPrototype.wrl developed for defensive

scenario. Length 6.8 meters. ..32
Figure 17. Screen Snapshot of the Camp Pendleton Geography created by the

MatLab script and modified for creation of Aden Harbor, Yemen.
Available online at:
http://web.nps.navy.mil/~brutzman/Savage/Locations/CampPendletonCali
fornia/CampPendletonOperatingAreasExample.wrl (accessed March
2003) ..33

Figure 18. Screen capture of Aden Harbor, Yemen X3D scene utilized for
reconstruction of the terrorist attack on the USS COLE (DDG 67).
Available online at:

xiv

http://web.nps.navy.mil/~brutzman/Savage/Scenarios/UssColeTerroristAtt
ack/AdenHarbor.wrl (accessed February 2003) ..34

Figure 19. Overhead view of Refueling Dolphin 7 from the USS Cole Terrorist
Attack scene. Available online at:
http://web.nps.navy.mil/~brutzman/Scenarios/UssColeTerroristAttack/
RefuelingPierSeven.wrl (accessed February 2003) ...35

Figure 20. Port View of the Refueling Dolphin at Aden Harbor.36
Figure 21. Starboard oblique view of the refueling dolphin at Aden Harbor.37
Figure 22. Conceptual View of the Terrorist Boat used to attack the COLE with the

Boxman.wrl humanoid used as the ship driver. Drawn to scale (length
10.7 meters overall) ...38

Figure 23. Picture depicting damage to the COLE after the terrorist attack [JMOCN
2002] ..40

Figure 24. Screen capture of the damage depicting in the X3D Reconstruction of the
attack on the 3D Model of the COLE. Shown at same scale as photograph
in Figure 23. ...40

Figure 25. Nautical Chart with basic timeline of the scenario reconstruction depicted.
Chartlet is also utilized as the entry level view to give a snapshot to the
end-user of what events are depicted as well as allowing all scenario
components to load behind the scenes. ..42

Figure 26. Screen capture of the Cole Reconstruction depicting the scenario being
fast-forwarded to the time of attack explosion. ...43

Figure 27. Low resolution X3D scene of Port Hueneme, California generated from
Level 1 DTED.
(http://web.nps.navy.mil/~brutzman/Savage/locations/PortHuenemeCalifo
rnia/PortHueneme.wrl) (accessed January 2003) ..44

Figure 28. Higher resolution scene of Port Hueneme, California depicted with a
scenario in progress..45

Figure 29. Low Resolution X3D Scene of the island of Oahu based on Level 1 DTED
and unclassified Bathymetry data. Created as part of The USS Greenville
– MV Ehime Maru reconstruction
(http://web.nps.navy.mil/~brutzman/Savage/Locations/Hawaii/OahuAndS
outhernBathymetry.wrl) (accessed January 2003)...46

Figure 30. High-resolution scene of the Hawaiian island of Oahu. Courtesy of
Planet9 Studios
(http://web.nps.navy.mil/~brutzman/Savage/Locations/Hawaii/oahu.wrl)
(accessed February 2003) ..47

Figure 31. Alternative High-resolution scene of Oahu courtesy of Major Calude
Hutton, USMC.
(http://web.nps.navy.mil/~brutzman/Savage/Locations/Hawaii/OahuCadrg
IITSEC2002.wrl) (accessed January 2003) ...48

Figure 32. Result of Rapid-prototyping of the Pearl Harbor Naval base and portions
of the South Channel of Oahu, Hawaii. ...49

Figure 33. Depicts the default coordinate axis for VRML97 and X3D graphics scenes
as viewed in the image.

xv

(http://web.nps.navy.mil/~brutzman/Savage/tools/authoring/CoordinateAx
is.wrl) (accessed February 2003) ...53

Figure 34. Depicts basic movement in 3 space by a generic entity...................................54
Figure 35. High level view of the kinematics physics state update for entities in the

AT/FP Scenario System...55
Figure 36. Real-time scenario in progress. Two small boats and one Arleigh Burke

class destroyer depicted being controlled by kinematics-based physics
controllers. ...56

Figure 37. Conceptual Design of the AT/FP Scenario Generator interface
requirements completed prior to rapid prototyping efforts..............................65

Figure 38. Conceptual picture of the startup dialog completed as part of the rapid
visual design for the application. ...67

Figure 39. Main User Interface (UI) menu with options from the rapid visual design.....67
Figure 40. Depicts available options from the application User Interface (UI).68
Figure 41. Depicts the basic actions prototyped for the end-user to take while

configuring the defensive setup for an AT/FP scenario...................................69
Figure 42. Depicts the average time versus task list from the initial AT/FP Scenario

Generator Usability Study..73
Figure 43. Depicts the Average Number of Errors versus the Task Number.74
Figure 44. Depicts the answer distribution for the 1st task difficulty assessment in

manual mode..76
Figure 45. Depicts the answer distribution for the 2nd Task. Level of difficulty

assessment for Wizard mode. ..77
Figure 46. Answer Distribution for the 3rd task list. Level of difficulty in preferred

mode (Manual or Wizard)..78
Figure 47. Depicts the wizard question distribution..79
Figure 48. Depicts the chart showing the Miscellaneous functions and 3D scene

manipulation. ...80
Figure 49. AT/FP Scenario Generator Main UI Screen from March 2002.......................89
Figure 50. Depicts Harbor Location selection screen. ..89
Figure 51. Depicts 2D Chart view of the harbor selected. ..90
Figure 52. Depicting the ship selection screen..90
Figure 53. Depicts the Ship Information screen, after ship selection has been made by

the end-user. ...91
Figure 54. Depicts the Defense configuration screen..92
Figure 55. UML Diagram depicting the atfp.components java package members.94
Figure 56. The Entity Data Type that extends the idea of Scenario Components for

representing entities in our scenarios...95
Figure 57. The Location data type that extends the ScenarioComponent class in order

to represent a harbor and other inanimate objects in our simulation system. ..96
Figure 58. XML Schema design view of an Entity’s properties for the AT/FP

Scenario Generator application..99
Figure 59. XML Schema design view of how the bounding box coordinates are

defined for storage within a scenario XML instance documents...................100
Figure 60. Example high level ATFP Scenario XML Instance Document.....................101
Figure 61. Example XSLT template invocation..101

xvi

Figure 62. Example XSLT template demonstrating the use of xsl:for-each and
xsl:choose for creating dynamic 3D scenarios...102

Figure 63. Example 3D Scenario dynamically created through the application of an
XML stylesheet against a scenario instance document..................................102

Figure 64. SVG depiction of a scenario run for statistics. ..103
Figure 65. XHTML Scenario Feedback slide stylesheeted from an XML instance

document..104
Figure 66. Depicts the agent architecture for user or agent control modes.....................112
Figure 68. Depicts the Template Manager Structure. ...114
Figure 69. Example of the invocation of the Java Web-Start Application Manager

desktop. ..117
Figure 70. InstallAnywhere from ZeroG.com installation action configuration screen

for creating the ATFP Scenrario Generator application installation.118
Figure 71. Resulting installation Java Applet for the AT/FP Scenario Generator

application..119
Figure 72. Depicts the main application content display for the ATFP Scenario

Generator Application..120
Figure 73. Depicts the Scenario Configuration Startup options the user can select

from to initiate an application session. ..120
Figure 74. Depicts the available menu selection for choosing a harbor for a scenario

run. ...121
Figure 75. AT/FP Scenario Generator after the user has chosen Pearl Harbor, Hawaii

as the location for the planning..121
Figure 76. Depicts background shipping frequency configuration.122
Figure 77. Depicts available ships for the AT/FP application.123
Figure 78. Ship Information Screen that is displayed after the user selection.123
Figure 79. Defensive Setup configuration for the ATFP Scenario Generator.124
Figure 80. Depicts available options for the configuration of picket boat model

parameters. ...125
Figure 81. Depicts the terrorist boat attack profile setup. ...126
Figure 82. Depicts Terrorist Boat model parameter configuration panel........................127
Figure 83. Depicts available menu options for running the scenario once

configuration is complete...128
Figure 84. Depicts the 3D view of the scenario in action from the rear perspective of

the hostile agent-driven terrorist boat. ...129
Figure 85. Depicts one run results for an AT/FP scenario run..130
Figure 86. Scenario options presented to the end user after a single-scenario run.131
Figure 87. Statistical output from ten scenario runs rendered in SVG graphics.131
Figure 88. Depicts the File Chooser dialog for opening a scenario file from disk.132
Figure 89. Depicts the entry level view for the LOE real time simulation depicting 2D

imagery with exercise tactical data prior to viewing the 3D scenario.135
Figure 90. Depicts the conceptual view of a non-lethal net engagement system being

modeling prior to use onboard a U.S. Navy rigid hull inflatable
boat(RHIB). ...136

Figure 91. Depicts a defending RHIB boat in user-control mode for the LOE
simulation run. ...137

xvii

Figure 92. Depicts the graphical representation of an attacking surface craft in agent-
control mode. The red sphere depicted is indicative of the high value
unit’s lethal engagement range for this scenario run.137

Figure 93. Depicts styled tactical data created and made available to the end-user
after viewing a scenario iteration. [Mnif 2003] ...139

Figure 94. Depicts screen snapshot of the visual setup for the terrorist attack profile
configuration to aid the end-user in evaluating the outcome of their
defensive plan occurred. ..140

Figure 95. Depicts cached web information on the Ticonderoga class Cruiser
displaying ship configuration information that might be interesting to the
end-user..141

Figure 96. Depicts example output of the ImageCreator JPEG writer class.172
Figure 97. Depicts the resulting jpeg encoded output file obtained after adding Java

Swing Components. ...173
Figure 98. Depicts the Print and Print Setup buttons in the AT/FP Scenario Generator

application in the upper right portion of the Ship Information panel.174
Figure 99. Depicts the Page Setup dialog..175
Figure 100. Depicts the Print Setup dialog..175
Figure 101. Depicts the startup screen for the Install Anywhere Enterprise Edition

application..183
Figure 102. Depicts the Installer Information Configuration panel for Install

Anywhere...184
Figure 103. Depicts the Project Description Configuration panel for Install Anywhere. .185
Figure 104. Depicts the Platform Configuration panel for Install Anywhere.186
Figure 105. Depicts the Look and Feel Configuration panel in Install Anywhere.187
Figure 106. Depicts the Billboards configuration for Install Anywhere.188
Figure 107. Depicts the Locale Configuration panel for Install Anywhere.189
Figure 108. Depicts the General Application Configuration panel for InstallAnywhere. 190
Figure 109. Depicts the Pre-Installation Action configuration panel in

InstallAnywhere...191
Figure 110. Depicts the Installation Configuration panel for InstallAnywhere.192
Figure 111. Depicts the configuration of Java Main Class arguments and default Mac

OS X security permissions for the X3D-Edit InstallAnywhere project.........193
Figure 112. Depicts configuration of classpath for the X3D-Edit installation

application in InstallAnywhere. ...194
Figure 113. Depicts the Post-Installation configuration screen for InstallAnywhere.195
Figure 114. Depicts the Build Configuration panel in InstallAnywhere...........................196
Figure 115. Depicts the selection of a VM from currently available ones on the

development computer...197
Figure 116. Depicts the X3D-Edit Installation Applet displayed in Netscape 7.01

running on a Windows XP Operating System. ..198
Figure 117. Depicts Multigen Creator in Vertex selection mode being used for creating

the off-screen representation of the Pearl Harbor scene.202
Figure 118. Depicts the PearlHarbor.wrl scene rendered in the Parallel Graphics

Cortona VRML97 plugin for the PC. ..209

xviii

Figure 119. Depicts the Arizona Memorial view in Pocket Cortona version 1.5 on the
Dell Axim-5. ..210

Figure 120. Depicts the PearlHarbor.wrl scene from Figure 120 displayed in Pocket
Cortona on the Dell Axim Handheld device..211

xix

LIST OF TABLES

Table 1. U.S. Army TNT Equivalency Model from http://www.fas.org (Date Accessed:
29 January 2003)..39

Table 2. Depicts standard units of measure for X3D graphics scenes from the X3D
specification. ..52

Table 3. Depicts a subset of the available methods for the Polygon class. From [SUN
2003] ..203

Table 4. Depicts the getPathIterator method for the Polygon class from [SUN 2003].204
Table 5. Depicts a subset of the hardware configuration of the Dell Axim X-5 from

[DELL 2002]..207

xx

THIS PAGE INTENTIONALLY LEFT BLANK

xxi

ACKNOWLEDGEMENTS

The author would like to acknowledge the direct financial support of the Space

and Naval Warfare Systems Center, San Diego California (SSC San Diego), and the

Defense Modeling and Simulation Office (DMSO), for sponsoring portions of this

research. The author would also like to thank the following list of people whose

assistance, support, and contributions made this thesis possible:

• Don Brutzman, Curt Blais, Gordon Schacher, and John Hiles from the Naval
Postgraduate School (NPS) for their guidance and support during the course of
this thesis research.
• Alan Hudson, Justin Couch, and Stephen Matsuba from Yumetech, Inc. for
both their work and contributions on the Xj3D Toolkit for X3D, but also for
providing copious amounts of information and guidance for development of this
thesis.
• Andrezj Kapolka from NPS for his contributions and assistance with the
application architecture design and integration with NPSNET-V and Xj3D.
• Don MacGregor and Ekrem Serin from NPS for their guidance on Java
network programming and integration with this thesis project.
• David Colleen of Planet 9 Studios for providing instruction on advanced 3D
content authoring and assistance for the I/ITSEC 2002 conference.
• Nick Polys from Virginia Polytechnic Institute and State University for taking
the time to introduce me to advanced Web 3D authoring techniques and theories
at the onset of this thesis work.
• George Lawler from NPS for his contributions, assistance, and work in
assistance with the development of the initial user-interface.
• Jeff Weekley and Doug Horner from NPS for providing general assistance
with learning both 2D and 3D graphics and providing useful feedback during the
course of this research.
• My brother Matt and the many others like him who are currently deployed
carrying out the fight against terrorism.
• My wife Tanya, and daughter Laurie for their encouragement, tolerance, and
perseverance during my late nights on the road to thesis completion.

xxii

THIS PAGE INTENTIONALLY LEFT BLANK

1

 I. INTRODUCTION

Si vis pacem para bellum. If you want peace, prepare for war.

--Roman maxim circa 5th Century A.D.

A. PROBLEM STATEMENT

Despite the many advances achieved within the fields of Modeling and

Simulation (M & S) and Information Technology (IT) over the past several decades,

practical application of such technology remains under-utilized by operational units in the

United States Navy. Furthermore, when such technology has been deployed in the last

decade it has been to exercise operator proficiency and increase C4I battlespace

awareness, but not for the warfighter to run ‘what-if’ scenarios that might aid in

development of tactical plans for employing established doctrine.

This thesis presents the investigation, research, and development of an exemplar

Anti-Terrorist / Force Protection (AT/FP) application using current web-based

technologies. This project can aid the warfighter in gaining insights for planning AT/FP

doctrine for navy ships, specifically against the water-side surface-borne terrorist threat.

Future extensions will do air, subsurface, and land-side also. This application is

accomplished by planning doctrinal implementation with 2D graphics, running ‘what-if’

scenarios in various web-based graphics formats, as well as through the capability for

conducting basic statistical analysis to facilitate single unit-level planning. The end result

is a prototypical planning tool that can be used for U.S. Navy AT/FP plan editing,

visualization, and training against the surface-borne terrorist threat.

B. OVERVIEW

Joint Publication 1-02 defines terrorism as,

The calculated use of violence or threat of violence to inculcate fear;
intended to coerce or intimidate governments or societies in the pursuit of
goals that are generally political, religious, or ideological.” [JP1 2002]

2

Over the past decade, United States armed forces have increasingly been the

target of terrorist organizations. One publicly stated declaration of this threat was Usama

Bin Laden’s comments on May 22, 1998:

Killing Americans and their Allies, civilian and military, is an individual
duty for every Muslim…we do not differentiate between those dressed in
military uniforms and civilians. [JMOCN 2002]

Specifically, and prior to the Al-Qaida sponsored terrorist attack on September

11th, 2001, Joint Vision 2020 stated that with U.S. conventional forces continuing to

maintain a force dominance in the twenty-first century,

the appeal of asymmetric approaches and the focus on the development of
niche capabilities will increase. [JV2020 2000]

With these ideas and the terrorist attacks against the USS Cole (DDG 67) in

October 2002 (Figure 1) and the French Oil Tanker, Limburg [GUARDIAN 2002] in the

same port in mid-2002 in mind, it is evident that U.S. naval forces will continue to pose

attractive targets for terrorist organizations, whether deployed, overseas, or inport within

the continental United States (CONUS). As a result, an open-ended research question

has been how the U. S. Department of Defense (DoD) can best leverage our IT

advantages in order to bolster both our counter-terrorist capabilities and those of allied

countries. [JMOCN 2002]

The approach presented in this thesis is specifically aimed at providing advanced

analytical and visualization capabilities to everyday defenders directly onboard

operational ships, at sea and in ports.

3

Figure 1. External Damage on USS COLE after Terrorist Attack in Aden Harbor, Yemen

October 12, 2000. 17 Individuals were killed in action, 39 were wounded in action.
[JMOCN 2002]

C. MOTIVATION

On October 12th, 2000, the USS COLE (DDG 67) was attacked in Aden Harbor,

Yemen. Al-Qaida sponsored operatives maneuvered a fiberglass skiff laden with

approximately 1/3 ton of TNT equivalent near COLE while she was refueling, and then

detonated the explosions onboard the skiff. [CCOI 01] The operatives sacrificed

themselves to carry out the attack, which resulted in 17 U.S. sailors being killed and 37

wounded in action from a crew of approximately 320 total sailors. [JMOCN 2002]

Although the ship was saved by the crew from being sunk by the attack, COLE required

extensive repairs that kept her under repair through April 2002.

Worth considering is a mission technological opportunity: if M&S tools and 3D

visualization had been available to the Force Protection planners before entering this port,

perhaps a profound improvement in self-defense posture might have prevented the

approach? Unfortunately, it is not possible to change what happened in Yemen, but only

4

hope to have a positive impact on future events. Hopefully, by empowering operators at

sea with M&S tools, we can aid in training for future situations in which sailors will be in

harm’s way and save lives.

D. OBJECTIVES

This thesis demonstrates and evaluates both functionality and effectiveness of

employing web-based modeling and simulation technologies such as X3D graphics and

agent-based simulation for planning Anti-Terrorist and Force Protection (AT/FP)

measures. The objective is to determine how these technologies can specifically be

leveraged to give planners greater insight than has been provided by traditional wardroom

discussion augmented by paper chart, “back of the envelope” conclusions, and other text-

based information. To accomplish this objective, several items must be done:

1) Identification of visualization, data storage, and any other applicable

technologies to be utilized must be made.

2) Design and Implementation of an application framework must be designed and

implemented in order to allow development of the various models, views, and

controls representing different entities such as ships, land, small boats, terrorists,

etc within our scenarios.

3) Development of a ‘user-centric’ interface to the application has to be developed

in order to provide tactical operators the information needed in an easy-to-use

manner.

4) Demonstration of a use-case presenting the application’s utility and how it

 can be leveraged for education and training in Force Protection.

E. THESIS ORGANIZATION

Chapter II reviews background and related information on defending against the

asymmetrical threat. Synopses are provided for the various technologies and techniques

investigated, developed, and leveraged during this thesis work. Chapter III explains the

problem definition, design, and proposed solution in formal detail. Chapter IV provides

an in-depth analysis and demonstration of how a web-based X3D reconstructive scene ie

5

developed depicting the attack on the USS COLE. It also shows how the components

and methodology applied can be extended and used in other problem domains. Chapter V

reviews the physics modeling utilized in the real-time model developed. Chapter VI

discusses the design process of developing the scenario generation interface in a ‘user-

centric’ fashion following current industry best practices. Chapter VII examines the

specific model design for the thesis work. Chapter VIII analyzes the agent-based

software design and implementation for autonomous control of role-based entities within

the AT/FP application. Chapter IX presents a use case that shows how an end-user can

develop a force protection plan and possibly gain insights to potential tactical short-

comings. Chapter X shows how the M&S technology developed can be utilized for the

training and education of Anti-terrorist measures within the Limited Objective

Experiment framework for AT/FP doctrinal development within Commander, U.S.

Pacific Fleet(COMPACFLT). Finally, Chapter XI summarizes the conclusions and

recommendations for future work of this thesis. The appendices present amplifying

information where appropriate as well as information on obtaining all graphics and

programming source code produced in conjunction with this thesis.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND AND RELATED WORK

A. INTRODUCTION

This chapter briefly reviews the numerous concepts that are the root basis for

understanding the multiple technologies leveraged in the conduct of this thesis. Subject

matter includes a brief overview of all technologies, design paradigms, and graphics

standards employed. Further explanation and study of the topics may be found in the list

of references at the conclusion of this thesis.

 B. ROLE OF 3D VISUALIZATION IN MODELING
ANDSIMULATIONTECHNOLOGY

As shown in [Nicklaus 2001], [Dickie 2002], and in other research domains,

visualization technologies have played numerous roles in the recent years. Capabilities

range from quick visual validation of the interactions of virtual entities represented by

various models to providing spatial awareness for fully elaborated battlespace

descriptions such as Marine Corps Operations Orders. [Nicklaus 2001] In the context of

this thesis, web-based 3D visualizations are used in a combination of ways to achieve the

goal of providing a usable, web-based modeling and simulation tool for defensive

planning against small, fast, surface-ship terrorist threats. This is a nascent field: few

repeatable examples are widely available. Numerous necessary technologies are needed

and synopsized in the next sections.

C. OPEN-SOURCE CONCEPTS AND TECHNOLOGIES

Open-Source software is freely available for any use, including modification and

redistribution. The first formal statement of the official Open Source definition appeared

in 1997 by Bruce Perens [OSI 2002]. This definition has continued to be refined and

maintained by the Open Source Initiative, a non-profit corporation. [OSI 2002] In short,

the definition states that besides providing access to source code, the distribution terms of

compliant open-source software must conform to the following set of criteria:

8

• Be a free redistribution,

• Include source code,

• Allow modification and redistribution,

• Maintain integrity of the original author’s source so users know who is

responsible for maintenance and support,

• Not discriminate against persons or groups,

• Not discriminate against fields of endeavor,

• Distribution of license with the software must apply to others without

execution of addition requirements to keep software from being secured

away through various legal means,

• The license is not specific to a product, and

• The license should not restrict other software that might not be open

source. [OSI 2002]

The general idea behind the Open Source movement in the programming

community has been that when software can be freely read, redistributed, and modified, it

accelerates the development process as compared to traditionally closed development

cycles of major infrastructure such as an operating system, graphics format standard, etc.

The Open Source idea has existed for a number of years, but only in the recent

past has it seen exceptionally widespread use in the business and government worlds.

Examples include the embracing of the Linux operating system by companies such as

IBM, Oracle, and Sun Microsystems [LINUX 2002], as well as the formation of the

Extensible 3D (X3D) Graphics Computer Aided Design (CAD) working group by the

Intel Corporation. [INTEL 2002] These companies have shown that successful business

models can be based upon open standards by focusing on services.

As a result, the decision was made early in the formation of this thesis to rely

upon open standards, open architectures, and web-based programming languages as the

basis for which to implement application development.

9

D. EXTENSIBLE MARKUP LANGUAGE (XML)

The Extensible Markup Language (XML) was developed by the World Wide

Web Consortium (W3C) as a subset of the Standard Generalized Markup Language

(SGML) with the initial goal of being able to define data with the simplicity of Hyper

Text Markup Language (HTML). HTML is primarily intended for the display of data to

the end-user while retaining the flexibility and extensibility of SGML. [Hunter 2001]

HTML tag sets and their corresponding presentation semantics are fixed; where as in

XML their meaning is what the developer intends with few restrictions other than to meet

basic formatting rules for the data tags. The separation of content and presentation

proves to be a valuable characteristic associated with markup languages, enabling

multiple display views for one set of data. For example, Figure 2 depicts a simplistic

HTML file with scenario data presented to the end-user in an unstructured manner.

Figure 3 demonstrates the same data represented in structured XML tags that allow the

advantages of the markup language to be leveraged in presenting different views to the

user.
<html>
 <head>
 <title>Scenario</title>
 </head>
 <body>
 <p> Scenario Properties: </p>
 <p> Location: Port Hueneme </p>
 <p> High Value Unit: DDG – 51 Arleigh Burke Class Destroyer </p>
 <p>Location: Inport Port Hueneme, California </p>
 </body>
</html>

Figure 2. Simple HTML Snippet with no structure to the data contained.

<scenario>
 <scenarioLocation> Port Hueneme, California
 </scenarioLocation>
 <highValueUnit type=”DDG-51” description=”Arleigh Burke Class
Destroyer” location=”inport, Port Hueneme, California” />
</scenario>

Figure 3. Sample XML snippet with same information as in the unstructured HTML
example but defined in a way that semantically significant data can be formally validated,

accessed and manipulated.

10

E. EXTENSIBLE STYLESHEET LANGUAGE FOR TRANSFORMATIONS
(XSLT)

The Extensible Stylesheet Language for Transformations (XSLT) is an XML

based language that is used to apply standard formatting that can result in multiple views

of an XML document. [Hunter 2001]. As Nicklaus showed with Marine Corps

Operations Orders represented in XML, XSLT is the engine that can allow multiple

representations or views to be created from the abstract data model represented by an

instance of an XML document. [Nicklaus 2001] By programmatically applying sets of

XSLT rules that are defined in XML against such an instance document, we can represent

a tactical scenario in one instance while having many options to choose what visual

representation of that document is applicable or appropriate to display to an end-user.

For example, the hypothetical XML document shown in Figure 3 of this chapter can also

be represented in 3D in addition to HTML through the application of XSLT stylesheets.

(Figure 4)

11

Figure 4. X3D Graphics Depiction of the Hypothetical XML Document from Figure 3.

F. DESIGN PATTERNS

As with many other Computer Science concepts, the original ideal of developing

reusable solutions to recurring problems came from the field of architecture when

Christopher Alexander wrote two books in the late 1970’s that covered various patterns

in building architecture and planning: A Pattern Language: Towns, Buildings,

Construction (Oxford University Press, 1977) and The Timeless Way of Building (Oxford

University Press, 1979).[Alexander 1977] [Alexander 1979] These ideals have been

furthered within the software industry. For example, the Patterns in Java series of texts

was studied both during the design and throughout the implementation of this thesis to

identify applicable areas and reduce the amount of time in the invention of software

design solutions that have been solved by others in the past. Although not an all-

inclusive explanation of the design patterns utilized in the thesis, the following is a short

12

representation with explanation of the theory behind some of the patterns used in the

execution of this thesis.

1. Mediator

Originally developed by the group commonly known as the ‘Gang of Four’

(GoF), Eric Gamma, Richard Helm, John Vlissides, and Ralph Johnson, the Mediator

pattern uses one object to coordinate state changes between other objects. “Putting the

logic in one object to manage state changes of other objects, results in a more cohesive

implementation of the logic and decreased coupling between the other objects.” [Grand

1998] This pattern allows a programmer to centrally manage complex object interactions

that commonly occur in a User-Interface centric application, such as tactical scenario

creation, configuration, and viewing, in a centralized location. With less dependency

built into the many different classes and objects that are created in a large application

development effort, more advanced levels can be reached quickly while maintaining an

effective level of maintainability.

2. Observer

Also developed by GoF, the Observer pattern “allows objects to dynamically

register dependencies between objects, so that an object will notify those objects that are

dependent on it when state changes.”[Grand 1998] This pattern is used heavily in the

‘Listener’ ideal that is central to reacting to user-driven actions in a Graphical User

Interface environment. It lays the foundation for notification of events to objects that

have registered an ‘interest’ in various state changes.

3. Singleton

Another original GoF pattern, the Singleton, “Ensures that only one instance of a

class is created. All objects that use an instance of that class use the same instance.”

[Grand 1998] This concept is very useful when dealing with the central management of

resources where there should be exactly one instance of the management class. For

example, when using the Prototype pattern to generate copies of well-known objects to

use in an application, the Prototype Builder or Manager could be instantiated utilizing the

Singleton pattern. Also, in the context of this thesis, when creating the management

13

classes that coordinate the internal state of autonomous agents, the Singleton is again

useful.

4. Delegation

“Delegation is a way to extend and reuse the functionality of a class by writing an

additional class with added functionality that uses instances of the original class to

provide the original functionality.” [Grand 1998] The application of this pattern allows a

programmer to more appropriately use the functionality of classes that might play one of

many roles in a newly created class vice merely extending the use of one existing class.

Autonomous agent programming implementations are often a good example of this

pattern in practical use. Each agent or actor in a simulation can be comprised of

numerous internal agents that all work together in different ways. Since the Java

programming language allows for only a single inheritance hierarchy, we are faced with

the difficult-to-manage case of cascading inheritance between classes, using multiple

interfaces, or using the Delegation pattern to create a class with the functionality desired

in a composite fashion.

5. Interface

The Interface pattern’s intent is to “keep a class that uses data and services

provided by instances of other classes independent of those classes by having it access

those instances through an interface.” [Grand 1998] The application of this pattern

allows for runtime extensibility and binding of classes within an application, without

having to know the inner details and workings of classes involved at compile time

beyond the fact that they implement all public methods declared in the interface. Refer to

[Grand 1998] for further details on the Interface Pattern design, or [Salles 2002] for

further information on the implementation details and application for runtime-

extensibility of this pattern within the NPSNET-V framework.

G. X3D GRAPHICS AND THE VIRTUAL REALITY MODELING LANGUAGE

X3D Graphics is the next-generation of the Virtual Reality Modeling Language

1997 (VRML97) 3D graphics format for the Web. In July, 2002, the final working draft

of the recommendation for specification was released by the Web3D consortium

14

available online at www.web3d.org/specs (accessed March 2003) [X3D 2002]. Of note,

X3D has been developed with an open-source sample implementation for specification

implementation and evaluation along with support from major industry players interested

in 3D content development for the Web. Since the format is XML based, it can also take

advantage of the benefits of XML by using XSLT stylesheets to view the same content

rendered in VRML97, HTML, or with direct rendering of the XML-based tree structure

in the open-source browser implementation, Xj3D. Theses [Hunsberger 2001] and

[Nicklaus 2001], along with examination of the X3D specification reference above,

provide an in-depth overview of most of the over 130 defined nodes within the X3D

scene-graph structure. More in-depth explanation of syntax will be provided in context

as required in the remainder of this thesis.

H. SCALABLE VECTOR GRAPHICS (SVG)

In the late 1990’s, the same need was identified for an open-standard interchange

format for 2-Dimensional (2D) graphics as was identified for 3D graphics. Since many

graphic design programs rely upon proprietary formats, there was no common way to

easily exchange information. As a result, similar to the Web3D Consortium’s efforts

with VRML and now X3D, the World Wide Web Consortium created a working group

for the development of vector graphics as an XML application, now referred to as

Scalable Vector Graphics (SVG). [Eisenberg 2002]

Similar to X3D for 3D, SVG keeps the 2D graphical views of data separate from

their abstract data model. One difference, though, as depicted in Figures 5-7, is the

common 2D images that have been supported by Web browsers since the early 1990’s

have only supported raster formatted 2D graphics which lose image quality when they are

scaled. For example, when one zooms in on a Joint Photographic Experts Group (jpeg),

Portable Network Graphics (.png), or Graphics Interchange Format (gif) image, the

pixilation artifacts can be severe. The application currently being used to view the image

must calculate a uniform manner in which to expand the image properties associated with

each pixel of the image which results in a reduction of image quality. [Eisenberg 2002]

15

As depicted in Figures 5 and 6, with a standard, open-based vector format such as SVG

one can scale without loss of quality of the original image.

Figure 5. Original View of Batik3d.svg
from http://xml.apache.org/batik/

(accessed January 2003)

Figure 6. Example of maintaining image
quality while zooming in on Batik3D.svg in
the Adobe SVG Viewer plug-in loaded in

Internet Explorer 6.0.

 Figure 7. Example of Loss of Quality While
zooming-in on a rasterized version of the

batik3d image (png depicted).

16

Additionally, one benefits from the same advantages found with a common

interchange format with 2D graphics as with 3D graphics through use of XSLT for

conversions. The same markup language document can be utilized in both 2D with SVG

as well as 3D with X3D. This technique is demonstrated later in this thesis with

statistical data from AT/FP scenarios.

I. THE JAVA PROGRAMMING LANGUAGE

The primary programming language during the execution of this thesis was the

Java Programming Language by Sun Microsystems. As stated recently by [Salles 2002]

and explained in greater detail on the Sun Microsystems Java website at

http://java.sun.com (accessed March 2003). Java is a Web-friendly language that is cross-

platform capable at run-time without having to recompile. Java is the primary language

of choice for openly repeatable network-capable interoperable programs.

1. JAVA 3D

Java 3D is a scene-graph based 3D Application Programming Interface (API)

provided by Sun. It is utilized as one of the rendering engines behind both the NPSNET-

V and open-source Xj3D engines also used for this thesis. Java 3D programming is not

required for X3D rendering. It can be used directly to augment Xj3D for special effects

if desired.

2. JDOM

JDOM is a Sun approved extension to the Java 2 API for using XML to process

data. More information for the details of JDOM use can be found at

http://www.jdom.org (accessed February 2003).

J. X3D, ECMASCRIPT, AND THE JAVA PROGRAMMING LANGUAGE

The X3D Script node allows models, controls, or dynamic graphics creation to be

incorporated into a Web-based 3D scene with programming languages such as

Ecmascript, Visual Basic, or the Java Programming language. [X3DSPEC 2002] The

Script node can also be used in conjunction with other nodes defined within a scene to

create more complex behaviors, and to provide functionality such as network access with

17

the IEEE Distributed Interactive Simulation (DIS) X3D Profile, physics models, or web-

based graphical user-interfaces. [Hunsberger 2001] This is also a means by which

software developers can further extend the X3D specification such as Yumetech Inc.’s

demonstration of a Multi Texture node that wasn’t part of the initial X3D specification

recommendation.

K. DIS-JAVA-VRML

DIS-Java-VRML is another open-source API and collection of exemplar

implementations that demonstrate the use of the X3D/VRML97 scripting node to allow

Large Scale Virtual Environments (LSVE’s) to be run within a standard web-browser

such as Netscape Navigator with freely available commercial plug-ins. Since DIS is an

International Standards Organization (ISO) standard and a well-understood protocol, it

provides a common framework for geographically separated collaborators or researchers

to communicate over the World-Wide-Web. [Hunsberger 2001] More information and

examples on DIS-Java-VRML can be obtained at:

http://www.web3d.org/WorkingGroups/vrtp/dis-java-vrml. (accessed March 2003)

L. XJ3D OPEN SOURCE PROJECT

Xj3D is the open-source rendering implementation for the X3D graphics standard.

It is “a Java-based toolkit developed by Yumetech that allows companies to rapidly

support X3D.”[X3D 2002] The Web3D Consortium has also formed the Java Rendering

Working Group consisting of members from Anaviza Inc., Sun Microsystems, and

Yumetech that are concurrently working on the definition and implementation of

bindings for various common graphical API’s such as OpenGL® and Direct3D™. Upon

completion, this implementation will make the specific graphics rendering context of

X3D graphics agnostic to the commercial up’s and down’s of the market place or

consumer popularity.

18

M. NPSNET-V

NPSNET-V is an on going Naval Postgraduate School research project that is a

Run-Time Extensible Virtual Environment framework. [Salles 2002] NPSNET-V is

utilized as one of the available 3D viewing frameworks for scenarios generated using

X3D graphics definitions and rendered with the Xj3D code-base within a Java3D

environment. [Salles 2002] or the project website at can be referred. to for more

information (http://www.sourceforge.net/projects/npsnetv/). (accessed March 2003)

N. AGENT-BASED SIMULATION

To complement the warfighter’s subject matter knowledge in any warfare area, in

the case of this thesis Anti-Terrorism/Force Protection, agent-based simulation provides a

valuable tool for playing “what-if” scenarios to examine the tactical implementation of

military doctrine. Agent-based simulation refers to modeling entities that have internal

intent and the ability for effecting autonomous action upon the simulation environment.

[DICKIE 2002] With simulation of the asymmetrical threat being difficult to do, agent-

based simulation affords a promising avenue in which to gain insights to potential

shortcomings in the tactical implementation of Anti-Terrorist defensive plans.

1. Multi-Agent Systems

The primary definition for a Multi-Agent System utilized in the scope of this

thesis is from [FERBER 1999]. He states that a multi-agent system is “an electronic or

computing model made up of artificial entities which communicate with each other and

act in an environment.” [Ferber 1999] He goes on to express this ideal in a more formal

manner shown in Figure 8.

19

Figure 8. Multi-Agent System originally from [Ferber 1999] and [Osborne 2002]

A more in-depth overview of the various existing multi-agent system definitions

can be found in [Osborne 2002]

2. NPS-Developed Composite-Agent Architecture

In order to leverage strengths of both cognitive and reactive agents within an

environment while simplifying the design through an indirect utilization of the

Delegation Pattern mentioned above, the Composite Agent (CA) architecture (Figure 9)

has been developed and implemented in several different contexts at the Naval

Postgraduate School MOVES Institute. [Osborne 2002] Modeled upon a common

robotics paradigm, “Sense-Decide-Act”, and more formally applied to autonomous

agents by [WOOL 2002] as “observe – update state – act”, a composite agent is defined

to be comprised of Symbolic Constructor Agents (SCAs) that sense their outer

environment to aid in the creation of an inner environment which can be acted upon by a

set of Reactive Agents (RAs) who are each “responsible for promoting a specific

behavior of the Composite Agent” [Osborne 2002]. This thesis builds upon the

architecture developed by [Osborne 2002] in the CA concept in order to explore the

possibilities of modeling cognitive templates within the given architecture.

20

Figure 9. Composite agent architecture from [Osborne 2002]

O. EXTENSIBLE MODELING AND SIMULATION FRAMEWORK (XMSF)

The Extensible Modeling and Simulation Framework (XMSF) is defined as a set

of Web-based technologies, applied in an extensible framework, that enable a new

generation of modeling and simulation (M & S) applications to develop, emerge, and

interoperate. [XMSF 2002] The primary subject areas for XMSF consist of: 1)

Web/XML, 2) Internet/networking, and 3) Modeling and Simulation (M & S). The

principal institutions which are leading the research and development of XMSF are: 1)

Naval Postgraduate School (NPS) Moves Institute, 2) George Mason University (GMU)

NetLab, Science Applications International Corporation (SAIC), and Old Dominion

University (ODU) Virginia Modeling, Analysis & Simulation Center (VMASC) Battle

Lab. [XMSF 2002a]

P. SUMMARY

This chapter describes the high level concepts of the many technologies explored

and exploited to provide a contextual understanding for the remainder of the thesis. If

more information and a greater in-depth understanding, the reader is referred to the List

of References as well as those mentioned above.

21

III. OVERVIEW OF PROBLEM

A. INTRODUCTION

Currently, there is little to no M&S technology deployed for the tactical

warfighter to play ‘what-if’s’ for the planning and deployment of tactical forces while

following established doctrine. Typical roles of M&S technology at the tactical level of

war are to aid the operator in improving proficiency in the use of equipment or simulating

war-time scenarios with the equipment, but not geared to the planning stage with

statistical analysis and visualization provided in order to improve outcomes in the field.

Taking advantage of this opportunity, this thesis demonstrates how to take a subset of the

many AT/FP situations faced by today’s navy against the surface-borne threat. It also

demonstrates how web-based technologies can be utilized to aid the warfighter in the

implementation of tactical-level plans by dynamically defining scenarios representing

potential defensive plans against terrorists. Then, it provides various options for running

‘what-if’ scenarios on those plans. The idea of being able to run these types of scenarios

was originally posed for web-based modeling and simulation utilizing X3D graphics by

[Murray 2000] with the auto-generation of visualization for Air Tasking Orders.

B. PROBLEM STATEMENT

Our problem is to first identify what is required to leverage M&S technology to

demonstrate a repeatable process that can be applied as providing tactical level tools to

the warfighter to better employ published doctrine. Specifically, in the war on terrorism

for planning against the defense of high value naval units against the surface-borne

terrorist threat. Then, to provide a prototypical implementation for a limited number of

locales and to show how it may be extended to provide insight against other threats.

C. PROPOSED SOLUTION AND RESEARCH FOCUS

The proposed solution to the problem stated above incorporates many of the

various ideals put forth in the last few years in web-based M&S technologies, while

developing new methodologies and content where applicable. Central to the solution is

22

the representation of models and views within to allow content to be manipulated and

viewed in different formats separate from the model definition and representation.

With XML work it is common to create exemplar components and views before

embarking on a specified local definition for representing what one cares about, in our

case tactical scenarios for AT/FP doctrine. So, the initial focus of the research and

problem solution was on development of the components necessary to represent a tactical

scenario. This began with the authoring of a surface ship not currently in the Scenario

Authoring and Visualization for Advanced Graphics Environments (SAVAGE) content

library hosted at NPS at http://web.nps.navy.mil/~brutzman/Savage/contents.html.

(accessed March 2003) Next, further components, and basic physical interactions

between entities within a virtual world were explored in the development of an

unclassified, web-based reconstruction of the terrorist attack on the USS COLE

http://web.nps.navy.mil/~brutzman/Savage/Scenarios/UssColeTerroristAttack/UssColeTe

rroristAttack.wrl . (accessed March 2003)

Then, we shifted gears a bit and investigated a ‘user-centric’ design process for

implementation of a suitable user-interface for the end-user that does not have intimate

development-level knowledge of the various web-based technologies utilized, and

showed how that process was applied in the context of this thesis independent of internal

development efforts. Further, we defined our tactical scenario high-level model

representation, and incorporated it into an XML schema definition. Following the

schema definition, the explanation of how XML stylesheets were used to transform a

locally defined scenario definition into several different views that can be utilized by the

end-user in unique and interesting ways. We then defined the user controls and physical

models incorporated and investigate what information from the real world needs to be

represented in the model and what is abstracted away for the context of our problem.

Following this, the autonomous agent design considerations and implementation were

defined and implemented to aid in gaining insight for our defensive plan both visually as

well as over multiple-scenario replications in order to see if any ‘outlier’ scenario

possibilities and behaviors can be identified. Finally, a use-case of the work developed

was demonstrated as well as further application of the ideals presented in this thesis and

23

how they can be applied to further military education, training, and experimentation in a

rapid, dynamic, web-based manner.

D. DESIGN CONSIDERATIONS

With the wide-spread deployment of IT-21 to the U.S. surface navy enabling

internet connectivity whilst deployed to the far-reaches of the planet for both unclassified

and classified internets, our model designs will need to incorporate the least amount of

data required to help answer our research question in order to provide a context in which

this or other future work can be deployed for training of operators at sea today. Just

during the work on this thesis, Central Processing Unit (CPU) speed for personal

computers has jumped from 867 MHz to 2.6 GHz in the span of a little over one year as

well as the further deployment of high-speed Internet connectivity. It is expected that

constraints that apply in the design and implementation of this context should be

examined on a regular basis for all web-based research and deployment of services to

continue to provide the quality of service expected by end-users.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. DEVELOPING SCENE COMPONENTS

A. INTRODUCTION

This chapter will demonstrate how scenario components are developed for

representing the 3D view of our models. It then demonstrates how a reconstructive

scenario can be created in order to view and gain insight from past events, providing a

recreation of the attack on the USS COLE that occurred in October 2000. Further, it

reviews the real-world computational physics utilized for dynamic scenario interaction

and control of entities. Then, it briefly examines the advantages and disadvantages for

various networking options available for these purposes, demonstrating an effective

problem solution. The chapter concludes by examining other physics-based subjects

worthy of more in-depth explanation.

B. DESIGN AND IMPLEMENTATION OF THE DDG-51 X3D MODEL

The DDG-51, Arleigh Burke Class Destroyer X3D model was the first graphics

project undertaken for this thesis. The process of model design and creation without the

benefit of design plans or CAD data follows the following steps:

1) Acquire suitable unclassified and open resources on which to base one’s

implementation. For military models, an excellent resource is the Federation of

American Scientists’ (FAS) website at http://www.fas.org (accessed March 2003)

Specifically, the primary source of information for the Arleigh Burke model is collected

from: http://www.fas.org/man/dod-101/sys/ship/ddg-51.htm. (Figure 10) (accessed

March 2003) This website provides unclassified pictorial representations of various

military vessels, as well as detailed ship specifications which can be leveraged in model

implementation.

26

Figure 10. Depiction of DDG-51, Arleigh Burke class destroyer from the FAS web site
http://www.fas.org/man/dod-101/sys/ship/ddg-51.htm. (accessed March 2003)

2) Once a suitable data resource is found, the next step is to break the model into

as many logical components as possible for 3D creation. In the case of the DDG,

without the advantage (at the time) of authoring of a previous DDG model or availability

of CAD data to work from, it was found easiest to progress in a bottom-up fashion

starting with the ship’s screws and shafting. Unlike other basic components such as guns

27

and basic hull forms, not many exemplars of either civilian water-craft propellers or

military ship screws were found. As a result, alternate resources had to be found in order

to have a basis on which to create these components for use with the Arleigh Burke

model. Two sets of data were found that proved to be suitable, the U.S. Naval Institute

Proceedings (Figure 11) and the USS ROSS (DDG 71) Commissioning Book from June

1997.

Figure 11. Depicts one of two images utilized for 3D creation of Propellers and Shafting

for the DDG-51 X3D model from http://www.usni.org [USNI 2001] (accessed March
2003)

In this case, the procedure is to first reproduce the propeller hubs and shafts, followed by

one blade which is then repeated using “copy-by-reference” (i.e. DEF/USE constructs) in

the geometry definition. (Figure 12)

28

Figure 12. Depicts the X3D definition of 1 propeller blade and an example of the re-use

of the single definition.

The final result of the visual model of the Arleigh Burke Class Destroyer propellers was

completed in approximately one week of non-full time work and is depicted in Figure 13.

29

Figure 13. Screen snapshot of Propellers.wrl rendered in the ParallelGrahics Cortona

VRML97 client plugin in Internet Explorer v6.0. File available online at
http://web.nps.navy.mil/~brutzman/Savage/Ships/DDG-ArlieghBurke-

UnitedStates/Propellers.wrl (accessed February 2003)

The hull was modeled next, in the same fashion as the propellers model, followed by the

flight deck as a separate component and continuing through the remainder of the ship

 3) The next step while developing all scenario components is to decide what level

of detail is to be modeled. Pertinent issues contained within level of detail are: a)

amount and level of detail of applying texturing to models, b) amount of lighting and

effects to apply, and c) the level of fidelity of sub-components to model. In the

construction of the DDG-51 model, basic texturing was completed for flight deck and

fore-castle markings, and the flight deck netting. (Figure 14)

30

Figure 14. FlightDeck.wrl component from the Arleigh Burke Class X3D model.

The default lighting model was chosen for use, and the current level of fidelity for

this implementation did not require specific ship decking components to be modeled,

only sufficient detail to permit possible helicopter operations. Further detail on decking

and access ports will be required for possible future work with integration of multiple

individual humanoid models.

 .

31

Figure 15. Screen Snapshot of the complete Arleigh Burke Class X3D Model.

Once the necessary X3D techniques were mastered so that the initial modeling of

the DDG-51 was complete (Figure 15), further ship models were rapidly prototyped and

produced for planned use in larger contexts. For example, the standard navy rigid-hull-

inflatable-boat (RHIB), Figure 16, was developed in the span of one evening with the

experience of the Arleigh Burke model creation completed.

32

Figure 16. Screen Capture of the RHIBPrototype.wrl developed for defensive scenario.

Length 6.8 meters.

C. DESIGN AND IMPLEMENTATION OF THE USS COLE
TERRORISTATTACK X3D MODEL

After implementation of X3D components, the next step was development of a

reconstruction scene to allow the development of a graphical framework in which to

develop further work. The terrorist attack on the USS COLE (DDG 67) that occurred

October 2000 in Aden Harbor, Yemen was chosen for this purpose. Modeling steps for

this process were: 1) Landscape Creation, 2) Further Entity Development, 3) Entity-

Entity Interactions, 4) Unclassified Weapons Modeling, 5) Real-Time Track

Reconstruction, and 6) Dynamic Play back of the Scenario. These steps are next

explained in greater detail in the remainder of this chapter.

1. Constructing the Geography and Pier

As first mentioned in [Blais 2002b], it was determined that the level of detail

provided by Digital Terrain Elevation Data (DTED) Level 1, which contains terrain

33

elevation postings at approximately 100 meter intervals, suffices for the representation of

Aden Harbor and the surrounding vicinity for the purposes of reconstructing the attack on

the USS COLE since there are large mountains in the vicinity of the harbor.

Furthermore, the refueling dolphin being modeled is not located alongside the shore, but

rather in the center of the harbor. The methodology utilized in this creation of the Yemen

locale was to modify a MatLab script adopted by [Blais 2001] in the creation of a Camp

Pendleton (Figure 17), California scenario. The resulting Aden Harbor area is depicted in

(Figure 18).

Figure 17. Screen Snapshot of the Camp Pendleton Geography created by the MatLab

script and modified for creation of Aden Harbor, Yemen. Available online at:
http://web.nps.navy.mil/~brutzman/Savage/Locations/CampPendletonCalifornia/CampPe

ndletonOperatingAreasExample.wrl (accessed March 2003)

While investigating the requirements for re-use of the previously developed scripts for

Camp Pendleton, it was discovered that besides Eastern Hemisphere Longitude markings

needing to have a negative factor applied while using MatLab's command line features, it

34

is also necessary to do basic testing on each version of DTED CD’s utilized to see what

height level represented sea-level. In some versions this was indicated by 0 and other

versions by -1 with the DTED specification silent on what the correct value is [DTED

1996].

Figure 18. Screen capture of Aden Harbor, Yemen X3D scene utilized for reconstruction

of the terrorist attack on the USS COLE (DDG 67). Available online at:
http://web.nps.navy.mil/~brutzman/Savage/Scenarios/UssColeTerroristAttack/AdenHarb

or.wrl (accessed February 2003)

Once the surrounding landscape was completed, it was then necessary to model

the refueling pier where COLE was moored while attacked. Recreation of refueling

dolphin 7 proved to be fairly straightforward with the use of the Web3D.org provided

open source tool for scene graph and geometry creation, X3D-Edit. X3D-Edit is a

graphics file editor for X3D that enables the XML tree of an X3D file to be edited in an

environment that checks correct syntax and quickly generates the 3D view of authored

35

changes. With the use of reference photos and this editor, a fairly realistic depiction of

the pier was quickly created (Figures 19, 20, and 21).

Figure 19. Overhead view of Refueling Dolphin 7 from the USS Cole Terrorist Attack

scene. Available online at:
http://web.nps.navy.mil/~brutzman/Scenarios/UssColeTerroristAttack/

RefuelingPierSeven.wrl (accessed February 2003)

36

Figure20. Port View of the Refueling Dolphin at Aden Harbor.

37

Figure21. Starboard oblique view of the refueling dolphin at Aden Harbor.

2. Entity Construction

After the landscape for Yemen was completed, it was necessary to further develop

or identify other existing SAVAGE repository models to utilize within the recreation of

the attack. As mentioned in [Blais 2002b], it was decided early in the modeling process

that creating models that have the simple but effective “look and feel” was sufficient,

investing more time towards accuracy of event timelines and entity behaviors than trying

to obtain “photo-realism”. To this end, low-resolution conceptual models (Figure 20)

were created for the various small-craft referenced in the Court Of Inquiry into the attack

on the Cole, without providing reference photography.

38

Figure 22. Conceptual View of the Terrorist Boat used to attack the COLE with the
Boxman.wrl humanoid used as the ship driver. Drawn to scale (length 10.7 meters

overall)

3. Explosion Modeling

For modeling the explosions in the context of this reconstruction, the U.S. Army’s

unclassified TNT equivalency model (Table 1) was utilized to represent the various

ranges of damage that occur [USNA 1998]. An unclassified failure rate for steel was

used to determine three levels of damage to represent in the ‘scientific’ view of the

explosion being rendered: 1) structural Failure, 2) severe Damage, and 3) light damage.

Each of these ranges was then represented through the use of different colored spheres

that allow an analyst or developer to get a visual indication of what the real effects of an

explosion might be, or in the case of the COLE see how closely they match the actual

events.

39

Table 1. U.S. Army TNT Equivalency Model from http://www.fas.org (accessed

January 2003)

Unclassified reports put the amount of explosive material onboard the terrorist

skiff that attacked the COLE at approximately 1/3 tons of TNT equivalent, based on the

reported size of the boat. The TNT scaling law (dw = d0 W1/3, where d0 is the distance

from 1KG of TNT, dw is the distance from W KG of TNT equivalent, and W = equivalent

amount of TNT) was then used in conjunction with Table 1 and theoretical steel failure

rates to determine the conceptual distances at which to plot the different spheres in the

X3D explosion model. When compared to a texture of the actual blast damage drawn to

40

scale on the Arleigh Burke Class X3D model (Figures 23 and 24), it was found that the

approximate size of the blast spheres favorably corresponded with that of the actual

damage. Thus, it was not necessary to divert resources into a higher-resolution physics

API for calculating explosion results.

Figure 23. Picture depicting damage to the COLE after the terrorist attack [JMOCN

2002]

Figure 24. Screen capture of the damage depicting in the X3D Reconstruction of

the attack on the 3D Model of the COLE. Shown at same scale as photograph in Figure
23.

41

4. Entity Track Animation

The realistic animation of entities of interest in any scenario reconstruction can

prove to be difficult. It is mathematically tedious to smoothly represent 3D positions

along with smooth, yet accurate animation through turns and reactions with the

environment. Interaction among multiple entities is further challenging, especially as the

number of entities in a scenario increases. A prototyping nook previously developed by

the SAVAGE project team that allows for more rapid scenario development is the

Waypoint Interpolator prototype. This prototype is utilized in a traditional object-

oriented fashion in order to drive the tracks of each entity within the scene over a four-

hour timeframe. Since the required kinematics mathematics required are encapsulated in

a ‘black-box’ like manner within Ecmascript inside the prototype while remaining both

editable and viewable to see what is occurring by scene authors, a scenario designer only

has to provide speeds, times, positions, depth, and course for an entity to be precisely

maneuvered within a scene. The time savings is great. Whereas during the construction

of the Arleigh Burke class ship model it took over 12 hours to simply animate three

missiles and one ship, greater numbers of entities were animated in more detail in the

reconstruction of the COLE attack in less than one-third of the time. Key events in the

COLE scenario are summarized in Figure 25.

42

Figure 25. Nautical Chart with basic timeline of the scenario reconstruction depicted.

Chart let is also utilized as the entry level view to give a snapshot to the end-user of what
events are depicted as well as allowing all scenario components to load behind the

scenes.

5. Dynamic Scene Playback

Once the full Cole scenario was created, the need for dynamic scenario playback

came to the fore-front. Since the time to run the scenario was in excess of four hours, it

became very tedious to test the scenario or demonstrate the content. As a result, the

SAVAGE project development team created the Digital Virtual Display (DVD)

Controller Prototype. By utilizing this controller, both a user and developer have many

options in which to view and interact with a given scenario. The prototype allows one to

play, pause, rewind, fast-forward, or dynamically move the scenario through the use of a

slider on the bottom of the controller’s ‘Head’s Up Display’ (HUD) shown in Figure 26.

Essentially this provides fine-grained visual control by the user over the X3D scene’s

Time Sensor functionality. Whereas before each waypoint interpolator prototype

instance in a scene-graph needed a separate time-sensor or clock to drive its animation,

all animation interpolators are now driven by the single untied DVD Controller instance.

This authoring paradigm allows one to view multiple repetitions of critical events from

43

multiple viewpoints and varying levels of fidelity. Given this flexible playback

capability, it is possible to analyze events from various temporal and spatial perspectives

that might give greater insight than solely relying on 2D reconstructions, or unvarying 3D

playback.

Figure 26. Screen capture of the Cole Reconstruction depicting the scenario being fast-

forwarded to the time of attack explosion.

D.X3D CONSTRUCTION OF OTHER LOCALES

1. Naval Base, Port Hueneme

Once the necessary components for the reconstructive scenario of the attack on

the USS COLE were completed, additional ports were desired to allow the end-user to

dynamically create scenarios for various configurations of the scenario components. The

additional ports constructed in the context of this thesis were the naval bases at Pearl

Harbor, Hawaii, and Port Hueneme, California. These ports posed different problems

than Aden Harbor. Primarily, Aden Harbor is distinct in the fact that it has well-defined

elevation differences close to the harbor area, which resulted in a usable port construction

44

solely based on DTED elevation data. When trying to utilize the same technique for Port

Hueneme, Figure 24 was the result.

Figure27: Low resolution X3D scene of Port Hueneme, California generated from Level

1 DTED.
(http://web.nps.navy.mil/~brutzman/Savage/locations/PortHuenemeCalifornia/PortHuene

me.wrl) (accessed January 2003)

As can be seen, the area depicted is generally flat and leaves much to be desired. As a

result, the harbor area was reconstructed based on unclassified overhead imagery and

harbor charts available from the National Imagery and Mapping Area (NIMA) for this

area. The resulting 3D scene is depicted in Figure 28.

45

Figure28: Higher resolution scene of Port Hueneme, California depicted with a scenario

in progress.

Port Hueneme is a fairly small port when compared to many other ports that Navy ships

use throughout the world. No additional tools were necessary for the creation of this

level of resolution port other than X3D-Edit, the nautical chart, graph paper, imagery, and

textures for making more immersive appearing graphics. Modeling Pearl Harbor proved

to have similar but additional challenges for the creation of a 3D scene to utilize for this

work. Larger ports will likely require further tools

2. Construction of Naval Base Pearl Harbor

Pearl Harbor, Oahu Hawaii proved to have similar challenges to Port Hueneme in

that the area surrounding the simulation harbor of interest was generally flat, consisting

of man-made constructions. After a quick check of the SAVAGE X3D scenario

database, a previous version was found that had been constructed for another project (the

46

USS Greenville / Ehime Maru Collision), but again the elevation data did not have

sufficient detail by itself to leverage for harbor modeling (Figure 29).

Figure29: Low Resolution X3D Scene of the island of Oahu based on Level 1 DTED and
unclassified Bathymetry data. Created as part of The USS Greenville – MV Ehime Maru

reconstruction
(http://web.nps.navy.mil/~brutzman/Savage/Locations/Hawaii/OahuAndSouthernBathym

etry.wrl) (accessed January 2003)

We then used a model of Oahu constructed by David Colleen, Planet 9 Studios,

San Francisco, California, based on commercial Digital Elevation Mean (DEM) data of

10 meter resolution, and unclassified imagery acquired from previous work (Figure 30).

The terrain resolution proved excellent, but nevertheless was problematic for direct use

for two reasons. First, the original model from Planet 9 was not scaled to meters as the

unit of measure. Default X3D/VRML units are meters, so scaling consistency is

essential.

The next model of Oahu was completed in conjunction with another student

thesis, based on Level 2 DTED and Mapping information utilizing the commercial

modeling tools Arc View ™ and Multigen Creator. The result is a one-meter rectified

47

version of the island of Oahu, and then further modified by Planet 9, to contain high

resolution imagery, pier outlines, and 10-meter-resolution data (Figure 31).

Figure 30. High-resolution scene of the Hawaiian island of Oahu. Courtesy of Planet9

Studios (http://web.nps.navy.mil/~brutzman/Savage/Locations/Hawaii/oahu.wrl)
(accessed February 2003)

48

Figure31. Alternative High-resolution scene of Oahu courtesy of Major Claude Hutton,

USMC.
(http://web.nps.navy.mil/~brutzman/Savage/Locations/Hawaii/OahuCadrgIITSEC2002.w

rl) (accessed January 2003)

The models in Figures 30 and 31 proved to be excellent examples of how one can

leverage mapping or imagery information differently in order to provide the targeted

client or customer of detailed terrain work the additional information needed when

viewing a scene.

At this point, a higher resolution of detail was desired for Port Hueneme. As a

result, leveraging an overhead image provided by NIMA of the Pearl Harbor naval base

and the Multigen Creator TM modeling tool, we were able to define a fairly simplistic

rapid prototyping process for ports. Figure 32 depicts the harbor scene of Pearl Harbor.

Specifically critical with all of the various methods that can be utilized for creation of

terrain and ports is the ability to coherently build an off-screen polygon representing the

water area for the scenario and having the scene rectified to 1 3D unit being equivalent to

1 meter in the real world as recommended by the X3D specification. If the scene is

rectified to meters, then the off-screen polygon correlation can be identified with some

49

effort on the part of the modeler, but if the scaling is not correct then the task becomes

much more difficult.

Figure 32. Result of Rapid-prototyping of the Pearl Harbor Naval base and portions of

the South Channel of Oahu, Hawaii.

E. SUMMARY

This chapter has demonstrated several of the key concepts utilized when

developing 3D graphics for the web, specifically through the utilization of X3D graphics.

It has shown some of the basic methodologies used when generating reconstructive

scenarios for dynamic replay for gaining additional insights into past or possibly future

events. The building blocks introduced in this chapter are utilized in the final thesis

product-- a dynamic scenario generation tool for modeling the defense of a naval surface

vessel against the surface-borne terrorist threat.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

V. X3D AND BASIC PHYSICS MODELING

A. INTRODUCTION

The application of physics to real-time simulation mirrors a common problem that

the computer gaming industry continually faces having a realistic look and feel to their

products. [Bourg 2002] This chapter provides an overview of the basic kinematics and

dynamics theory applied in this thesis, to effect changes of entity state through the

utilization of the X3D Distributed Interactive Simulation (DIS) profile.

B. KINEMATICS

In [Bourg 2002], [Gomez 2000], [Lamonde 2000], and numerous other gaming,

animation, and simulation references, kinematics is defined to be the study of the motion

of rigid bodies or particles focused on linear and rotational position and velocity, a body

and how these properties are related with respect to change over time. The effects of

forces and accelerations acting on a body are considered dynamics.

For a real-time or near-real time simulation, a rigid body can be considered as an

object or entity that doesn’t morph or dynamically change its shape in any significant

manner while moving. Location, orientation, and other factors are important, and need to

be updated in real time for the targeted environment. A particle can be thought of being

the center of an entity that does have mass, but the dimensions and lower levels of detail

are unimportant for the problem domain being investigated. In this thesis, the primary

entities of concern for simulation are ships moving on the ocean surface, in generally

constrained local environments, with sea state zero.

Although one might overlook it, the units of measure for any real-time simulation

system must be known and agreed upon if interoperating with others before serious work

can be done. The X3D specification [X3DSPEC 2002] lists standard units of measure

with respect to distance, angles, time, and color space as depicted in Table 2.

52

Category Unit

Linear distance Meters

Angles Radians

Time Seconds

Color space RGB ([0.,1.], [0.,1.], [0., 1.])

Table 2. Depicts standard units of measure for X3D graphics scenes from the
X3D specification.

Additionally, the default axis structure that is used in X3D graphics is followed in this

thesis. That is, as the user is looking at their viewing device, the positive X axis is

increasing as one moves to the right, the positive Y axis is increasing in the upwards

direction, and the positive Z axis is increasing towards the viewer (Figure 33). Some 3D

systems define the ‘up’ axis as being the Z axis as compared to the Y, such as the open

source modeling and gaming toolkit, Blender 3D from http://www.blender/org (accessed

February 2003).

 The next property of concern after three-space position for rigid body kinematics

for simulation systems is velocity. Velocity is treated as a vector with both a magnitude

and direction. [Bourg 2002] This un-normalized magnitude can be thought of as the

entity’s speed, or rather the change in distance per a given time step in units of interest

(for example miles per hour, nautical miles per hour, meters per second, etc.). Real-time

animation reduces the velocity ideal to what is called instantaneous velocity, or rather the

approximated velocity over a much smaller time step, usually on the order of

milliseconds for real-time simulations of higher-fidelity entities.

More specifically, velocity is the amount represented in differential terms as the

derivative of the change in position, or displacement (ds) with respect to time(dt)

represented by: v = ds/dt.

53

Figure 33. Depicts the default coordinate axis for VRML97 and X3D graphics scenes as

viewed in the image.
(http://web.nps.navy.mil/~brutzman/Savage/tools/authoring/CoordinateAxis.wrl)

(accessed February 2003)

Now, we also care about acceleration for rigid body kinematics. If we assume

instantaneous achievement of a desired speed or velocity, any insights to be gained from

implementation of a simulation system could be skewed, or even worse give the

experimenter false insights to system behavior. We can think of acceleration as the rate,

or amount which we can increase our speed by. From [Bourg 2002], average acceleration

(a) is defined to be the rate of change in velocity (dv) with respect to time (dt),

represented in derivative form by: a = dv/dt.

 Now, for our real-time simulation we need to produce an approximation of a

given entity’s velocity at a given timestep which can be dynamically determined. The

Euler Method [Bourg 2002] shows that we can approximate our entity’s displacement by

first approximating our velocity at time T1 (where F=force, m=mass, dt=change in time

or timestep).(vto+dt)=vto + (F/m)*dt Then, we can approximate the displacement at time

T1(where S is the displacement).

54

(St0+dt = S t0 + dt (vt0+dt))

The Euler method, while useful, truncates the solution of displacement beyond the first

derivative. There are well-known improvements and some alternatives to the Euler

method where the percent error of actual entity properties versus the approximated ones

can be significant enough to impact the stated goal or goals of a simulation system which

were not investigated in the context of this thesis.

 The above equations are straight forward to break into the three dimensions

necessary for representation in a real time 3D graphics system by separating out the

components by the three dimensions of our coordinate axis, namely the x, y, and z axis

(Figure 34)

Figure 34. Depicts basic movement in 3 space by a generic entity.

So, from Figure 34, the velocity for each plane can be expressed by:

Vx=Vw * cos (Thetax)

Vy=Vw * cos (Thetay)

55

Vz=Vw * cos (Thetaz),

Where (Thetax) is equal to the displacement traveled in the X plane divided by the overall

displacement; similarly for the other two planes. The 3D displacement can be calculated

by multiplying the value for each component’s respective velocity by the time.

Acceleration is also incorporated in the same manner discussed earlier for one dimension,

we just split into three axes as we did for the velocities.

 Angular displacement, velocity, and acceleration are similarly calculated as their

positional counterparts. For average angular acceleration calculations, the angular

displacement at T1 is equal to the angular displacement at T0 + the angular velocity at T1 *

the time step + the angular acceleration. Further complicity and fidelity can be gained by

additional calculations with respect the effects upon a rigid body’s angular acceleration

by both tangential and centripetal accelerations.

 The desired end-state for our system is to have ships move in a kinematics based

fashion from ordered rudder angles and speeds initiated either by an end-user or

autonomous agent (Figure 36). For each timestep in our real time simulation, the actions

in figure 35 are carried out and the entity’s state updated.

Figure 35. High level view of the kinematics physics state update for entities in the

AT/FP Scenario System.

56

Figure 36. Real-time scenario in progress. Two small boats and one Arleigh Burke class

destroyer depicted being controlled by kinematics-based physics controllers.

C. DIS-JAVA-VRML

It was decided in the design phase of this thesis to leverage a socket-based

simulation system to maintain a separation between the system’s models and controllers

from the various graphical views that could possibly be associated with them in order to

minimize the impact that changes in rendering structure from private industry would have

on the project. After choosing a socket-based infrastructure, it was further decided to

utilize the DIS protocol. DIS is an ISO-approved standard network protocol, so as a

result it is well-defined and proven to be scalable. Second, much work has been

completed in the past proving DIS-driven simulations can be run in lightweight

X3D/VRML97 clients in web browsers as well as in more heavyweight client side

applications. The primary packet type of DIS leveraged was the Entity State Protocol

Data Unit (ESPDU), which communicates all of the information needed in order to

update the physics state variables mentioned above. Additionally, DIS also supports

57

other protocols important to our simulation, such as the Detonation Protocol Data Unit

and Firing Protocol Data Unit that allow us to communicate state information regarding

the expenditure of weapons, and if an entity has been hit by a weapon. With the advent

of the X3D specification, the DIS profile is a full-fledged member profile of the proposed

specification which should guarantee continued support throughout the near future. The

only difference made in the physics modeling steps from Figure 35 is that at the end of

each decision loop for each entity at each time step the entity transmits an ESPDU update

to the applicable networking Internet Protocol (IP) address.

58

THIS PAGE INTENTIONALLY LEFT BLANK

59

VI. INTERFACE DESIGN AND IMPLEMENTATION PROCESS

A. INTRODUCTION

At the onset of development of work on this thesis, the decision was made to

focus specific attention towards maintaining a ‘user-centric’ design and implementation

process in order to best provide an exemplar of how current web-based modeling and

simulation technologies can be leveraged towards aiding the warfighter in gaining

insights on the employment of tactical doctrine. Traditionally, usability is a neglected (or

poorly implemented) area with respect to Department of Defense (DoD) Information

Technology (IT) applications. As a result, many systems are considered technically

successful and delivered to the fleet, but to the end-user have many short comings such

as: being very confusing to operate, require many days away from one’s job to attend a

special school or training course in order to learn how to use the application, are error

prone, hard to leverage to their full design capabilities. [Darken 2002] This thesis

leveraged proven industry practices in the field of usability [Darken 2002][Nielsen 2000]

in order to reduce the sum total number of errors for the application produced, decrease

any required training time for use in the training and education environment of the

application, attract other interested parties in the Department of Defense for collaboration

on research, and just make it more intuitive for warfighter’s to utilize.

B. NEEDS ANALYSIS

The goal of this work is to provide a web-based simulation to the U.S. Navy fleet

in support of gaining insight for Anti-Terrorism/Force-Protection (AT/FP) doctrinal

requirements at the individual ship level. Currently, there is no organic capability

supporting the modeling and simulation of AT/FP defenses on most U.S. Navy warships

that might allow Force Protection Officers and their support personnel, to compare and

contrast potential employments of the limited available resources onboard ship, and to

view potential outcomes in the numerous ports and harbors that warships visit throughout

the year.

60

One additional area currently under doctrinal development by the Navy is the

formulation of a Detect-Sort-Decide-Engage (DSDE) decision process to aid servicemen

in making correct and timely decisions in defense of the ship by providing them with pre-

assigned distances to identify unknown personnel and vehicles (air, land, and sea), and to

employ various lethal and non-lethal actions based on implemented rules of engagement.

Until official doctrine is thoroughly tested and evaluated, ship’s force personnel will need

to be able to view the effect of varying the ranges to perform different actions in the

DSDE decision loop, based on experience regarding the location of the ship. This is a

very difficult job due to dramatic differences in harbor layouts throughout the world.

Thus, this thesis application might have significant impact if it can be effectively used by

naval operators

1. Judgment Criteria

The criteria that will be used to judge the effectiveness of the application’s

performance are:

a. (learnability) Ease of use. Minimal to no training required to use, meaning that

it should be intuitively obvious to set up and test defenses without formal

training in use of the software.

b. Scope for location availability is limited (i.e. only enough ports are

implemented in order to adequately perform testing and development).

Efficiency is judged based on different positions of tactical entities in the

available harbors only.

c. Formatting of results of the simulation need to be user friendly and

meaningful.

d. Feasibility of use as a practical planning tool as opposed to traditional 2D pen

and paper methods. The tool needs to be no harder than these traditional

methods to utilize and require (at worst) equal time to complete planning a

defense.

e. Predictable error behavior and minimal error rate. Provide ability for the user

to go back to the previous state to avoid re-work when user makes an error.

61

f. Memorability. Built-in demo / teaching mode since long terms between uses

can occur.

2. Problem Approach

The developmental focus done in conjunction with the usability design and

analysis focuses on:

a. Portability: (considered pivotal to deployment onboard navy ships). Multiple

platforms and operating systems targeted for possible deployment. Aiming for as

close to a ‘one-click’ installation process as possible.

b. Graphical User Interface (GUI): Use current windows-type interface. Change

or redesign to meet the expectations of the above judgment criteria.

c. Add additional functionality not yet existing and maintain focus on judging

criteria while developing the remaining portions of the interface.

d. Develop useful reports and printable output describing the results of a

simulation run.

C. PROJECT GOAL

The primary goal for this project was to enable the user to virtually place a ship in

a computer simulated harbor for the purpose of gaining insight into anticipated

effectiveness of specific Anti-Terrorism/Force Protection (AT/FP) defensive postures.

Features that help to meet this goal consist of but are not limited to:

1. Easily choosing a harbor for a simulation run.

2. Easily choosing a ship type.

3. Easily choosing a placement of the ship type within the chosen harbor.

4. Easily choosing placement of the required defenses. In this case

limited to contain the surface-borne terrorist threat only with

extensions to other threats at a later time frame.

5. Easily choosing appropriate ranges for the defensive entities to act in

the Detect-Sort-Decide-Engage process.

62

6. Easy configuration of a current threat condition to identify applicable

rules of engagement.

7. Easy configuration of threats to run simulated attacks against the

configured defensive parameters.

8. Intuitive viewing and interaction with the simulation

9. Easy ability to print the 2D view of the scenario setup and

configuration for further annotation/markup, training and review.

10. Easily able to save settings and simulation runs as desired and required

for subsequent restart/replay.

D. USER ANALYSIS

Targeted user groups for this application are U.S. Navy Surface Warfare officers

plus support personnel such as Fire Controlmen and Gunner’s Mates that plan Force

Protection and Anti-Terrorism (AT/FP) defenses for surface ships or submarines. They

are experts in their fields and are formally trained in AT/FP tactics and methodologies by

the navy. They are competent in the use of computer programs in windowing

environments such as Microsoft Word, Outlook, and both the Internet Explorer and

Netscape web browsers, and are guaranteed to have access to modern computers with the

above mentioned software loaded and operational. They have access to Information

Technology (IT) trained professionals in their work environment for troubleshooting and

assistance with computer hardware, software, and any other technical issues that may

arise.

1. User Characteristics

This application will be used to plan shipboard AT/FP defenses, and identify

possible shortcomings in defensive plans. Rate of usage is expected to be bi-weekly

overseas, and at least quarterly in the continental United States.

2. User Skill Levels

With the widespread implementation of IT-21 throughout the U.S. Naval Surface

Force we can assume our targeted user base has general computing skills with some

63

proficiency with Microsoft Office Products in Windows Operating System environments,

web-surfing capable, and experience utilizing non-user centric designed software for

years. Also, we can assume marginal to good typing skills, but this is not a requirement

for this application.

3. Conclusion

Threats and capabilities in the future are expected to change, the application

design needs to take this into consideration, and plan for the capability to add items at

future dates.

E. TASK ANALYSIS

The task analysis identifies all required tasks the user can be expected to perform

while utilizing the application and serves as the basis by which we will later test and

record measures of effectiveness assessing the application’s successful usage.

Primary Task 1. Setup scenario:

Subtasks:

 1a) Choose harbor for simulation run.

 1b) Choose ship type

 1c) Choose placement of ship in harbor.

 1d) Choose placement of required defenses about ship in harbor.

 1e) Choose appropriate ranges for the defensive entities to act in the defensive

process.

 1f) Configure applicable defense model parameters for the scenario run.

 1g) Choose and configure threats(s) to run against the configured defense

parameters.

 1h) Choose and configure user participation mode. (ie agent only, user only, or a

combination of each).

 1i) Print 2D layout of defensive configurations.

 1j) Save scenario setup to disk for future reuse.

64

Primary Task 2. Run Simulation:

Subtasks:

 2a) Observe 3D visualization of scenario situation

2b) Choose current viewpoint and be able to change to other viewpoints in the 3D

scenario run.

2c) Show capability of being able to view agent and/or user controls for entities in

the scenario.

2d) Show capability to view end of run analysis after scenario run is complete.

2e) Demonstrate capability to load and run scenario from scenario saved to disk.

2f) Demonstrate capability to run scenario for statistics after viewing a single scenario

run.

F. CONCEPTUAL DESIGN

Before starting to visually design and implement the user interface for the

application, a conceptual design for the requirements of the objects, attributes on these

objects, and the exposed relationships and actions for the system was conducted. Results

are presented in Figure 37.

65

Figure 37. Conceptual Design of the AT/FP Scenario Generator interface requirements

completed prior to rapid prototyping efforts.

G. VISUAL DESIGN

Prior to implementation of a prototype version of the user-interface (UI) of the

AT/FP scenario generation application, a hand-drawn version of the application UI was

completed and tested on one novice-level and one expert-level test subject, in order to

66

gain insights towards design flaws beforehand. Specific comments from the test subjects

were:

Reviewer One Comments: (from an ‘expert’ potential user of the proposed

system): “The GUI for the AT/FP Simulator looks like it should be very user-friendly,

especially with the implementation of the Wizard setup. I just have two questions:

1. Under Panel #4 of the wizard setup, what are the S, D, A, and E boxes

used for?

2. For the same panel, how will you implement the feature for the user to

select a type of defender (M-14, shotgun, etc.) and place him at a

specific location on the ship? Will it be a select defender/drag-and-

drop him to a location or something else?

Reviewer Two Comments: (from a ‘novice’ user):

1. Would like dialog boxes explaining the step that the wizard is on so you don’t

have to guess.

2. Thought having text input for ranges would be a good alternative to dragging

and dropping those as well.

3. Thought a demo mode would be a good complement to the wizard mode.”

The major portions of the hand-drawn UI prototype are shown in Figures 38, 39,

40, and 41.

67

Figure 38. Conceptual picture of the startup dialog completed as part of the rapid visual

design for the application.

Figure 39. Main User Interface (UI) menu with options from the rapid visual design.

68

Figure 40. Depicts available options from the application User Interface (UI).

69

Figure 41. Depicts the basic actions prototyped for the end-user to take while configuring

the defensive setup for an AT/FP scenario.

It became important to conduct several design iterations on paper before starting

the actual development of the interface. From the conceptual model design to

implementation, we identified many places where development time would have been

wasted on implementation, correction, implementation, etc. if time had not been taken to

discuss alternatives in a group setting over a period of several days. Some ideas that

made sense early in the design discussions evolved significantly in other directions by the

time subsequent ‘pen and paper’ analysis was conducted with two test subjects.

70

H. USABILITY ANALYSIS

The following tasks were carried over from the earlier task analysis for the initial

usability assessment conducted on the AT/FP Scenario Generator application. These

tasks constitute the specific areas of interest for the usability study.

1. Setup a simulation

a. Choose a harbor

i. Menu selection

b. Choose a ship

i. Menu selection

c. Choose placement in the harbor

i. Direct manipulation

d. Choose placement of required defenses

i. Direct manipulation

e. Choose appropriate ranges.

i. Form fill in

f. Choose threat.

i. Menu selection

g. Choose participation mode.

i. Menu selection

h. Print 2d layout.

i. Menu selection

i. Save for future use.

i. Menu selection

2. Run a simulation.

71

 a. Observe 3D scenario.

b. Choose viewpoint.

i. Virtual environment controls

c. Choose speed.

i. Virtual environment controls

d. Stop and start simulation.

i. Virtual environment controls/Menu

 Selection

e. Restart simulation.

i. Virtual environment controls

f. Record simulation for playback later.

i. Virtual environment controls/Menu

 selection

I. USABILITY TEST SUBJECTS

In total, seven test subjects were subsequently tested for the initial usability

testing phase for the AT/FP Scenario Generator application. Six of the test subjects were

active duty naval officers, and one was a prospective naval officer currently in his last

year of Reserve Officer Training. Although by no means all-encompassing, this number

of test subjects was considered adequate for an initial round of testing.

Several additional assumptions can be made regarding the targeted user base for

this work. First, the targeted end-users were U.S. Navy Surface Warfare Officers, other

sea-going naval officers, and support personnel such as fire controlmen and gunner’s

mates that plan AT/FP defenses for navy warships and submarines. They are experts in

their fields and are formally trained in AT/FP tactics, techniques, and procedures by the

navy. They are assumed to be competent in the use of computer programs in windowing

72

environments such as the Microsoft Office suite as well as capable of web-surfing in the

Netscape and Internet Explorer web browser applications. They are also guaranteed to

have access to current computer hardware with the above-mentioned software deployed

and operational. They also have access to IT trained professionals in their work

environment for troubleshooting and assistance with computer hardware, software, and

other technical issues that may arise.

J. DATA COLLECTION AND JUDGEMENT CRITERIA

Measure Of Effectiveness 1. Ease of Use: (Learnability) Minimal to no training

 required to use. Should be intuitively obvious to set up and test defenses without formal

training in the use of the software.

Some interesting results were found in this area. During the design phase, it was

decided to have two forms of scenario editing/creation/modification available to the end-

user: 1) Manual data entry and 2) a wizard assisted mode. Testing found that there were

minimal errors and training required while using the wizard mode compared to the

manual entry, yet over 50% of the tested users still preferred the manual entry although

their performance was sometimes much worse. Testing also revealed that even though

the wizard mode was helpful in eliminating errors and decreasing editing time among the

end-users, utilizing only text-based information in describing what actions to take next

did not seem to fully work in all cases. Either too much text appeared in the dialog, or

else there seemed to be a need to incorporate descriptive pictures as well, especially for

3D scene manipulation. None of the tested user-base had prior experience with 3D scene

manipulation in a web browser. No user was able to adequately manipulate the scenes

with a text-based description before loading from the wizard without a fair amount of

trial and error with the interface. Thus a training movie and demonstrated tutorial

appears to be very important. After this period, the majority of tested users enjoyed and

found the 3D worthwhile.

Moved to next page

73

The first result examined with respect to learnability is that of overall time to

complete a task. Participants were given a list of tasks to perform, the start and finish

times were noted to determine overall time for completion of the tasks. The tasks on the

first three lists were exactly the same. Participants were prompted to use the manual

mode for the first list, the wizard mode for the second list, and then allowed to make their

own decision for the third. Results are shown in Figure 42.

Average Time vs Task List

6.4

3.1 2.9

6.9

4
4.4

5.9

2.2
1.4

0

1

2

3

4

5

6

7

8

1 2 3

Task List number

Ti
m

e
(M

in
)

Average Time + 1 Std Deviation -1 Std Deviation

Figure 42. Depicts the average time versus task list from the initial AT/FP Scenario

Generator Usability Study.

All participants were able to complete the task list faster with experience.

Interestingly, average time for list 3 is less than for list 2, even though most participants

decided not to use the wizard when given the choice. Testing also counted the number of

good clicks, bad clicks, and keyboard/mouse switches. Evaluation considered a good

74

click to be anything that is in the correct direction of completing the current task item.

For instance, clicking on the right menu or using the ALT+<key> combination to open

the correct menu for the current task is considered ‘good’. Bad clicks were anything that

indicated that the user did not know how to proceed. Clicking on the wrong menu, for

example, is counter to completing the task, and so we considered it an error. Figure 43

chart shows the results of errors averaged across all the participants.

Average Errors vs Task Number

0

1

2

3

4

5

6

7

8

9

10

1 3 5 7 9 11 13 15 17 19 21 23 25

Task Number

A
ve

ra
ge

 E
rr

or
s

Average Errors + 1 Std Deviation

Figure 43. Depicts the Average Number of Errors versus the Task Number

75

The tasks 1 to 6 in Figure 43 correspond to the first task list. Tasks 7 to 12

correspond to task list number two. Tasks 13 to 18 correspond to the errors for task list

number three, and the remaining task numbers are from the miscellaneous task listing.

Notice that the error rate for tasks 13 to 18 is almost zero, except for task 15. Task 15

was the direct manipulation task for placing the ship and small boat. Besides that task,

the users had learned the interface well enough by the third iteration to significantly

reduce error rate. This data considered with the average time data shown above indicates

that the application is learnable.

When participants finished specific task lists, they were presented with a

questionnaire to capture their thoughts about the tasks they had just completed on a scale

of 1 to 5 where an answer of 1 means that the task was consider easy to accomplish and 5

being hard to accomplish. These results are shown in the next series of charts. Each of

the seven participants (shown along the horizontal independent axis) was asked three

ease-of-use questions. The bars for each user show their answers to the questions with a

longer bar indicating greater difficulty. This first chart (Figure 44)shows that most users

found the application moderately difficult to use the first time, but there are no ‘too hard’

reactions, which was answer number 5 in the questionnaire.

76

Answer Distribution for 1st Task
List

0

1

2

3

4

1 2 3 4 5 6 7
Participant #

A
ns

w
er

(1
 -

ea
sy

, 5
 -

ha
rd

)

Easy to Configure the Scenario?
Easy to select Harbor and Ship?
Easy to place Ship, Small Boat and Terrorist Boat?

Figure 44. Depicts the answer distribution for the 1st task difficulty assessment in manual

mode.

Recall that task list two was completed by using a wizard interface that prompted

the user with dialog boxes for every step of the task list. All users found the interaction

when guided by the wizard to be obvious (Figure 45).

77

Answer Distribution for 2nd Task
List

0

1

2

3

1 2 3 4 5 6 7
Participant #

A
ns

w
er

(1
 -

ea
sy

, 5
 -

ha
rd

)

Easy to Configure the Scenario?
Easy to select Harbor and Ship?
Easy to place Ship, Small Boat and Terrorist Boat?

Figure 45. Depicts the answer distribution for the 2nd Task. Level of difficulty

assessment for Wizard mode.

After the third time completing the task list, questions were asked about how the

participant felt about the ease-of-use of the application again. Results show some

moderately difficult answers appearing again (Figure 46). Remember that many

participants opted not to use the wizard for the third task list.

78

Answer Distribution for 3rd Task List

0

1

2

3

4

1 2 3 4 5 6 7
Participant #

A
ns

w
er

 (

1
- e

as
y,

 5
 -

ha
rd

)

Easy to Configure the Scenario?
Easy to select Harbor and Ship?
Easy to place the Ship, Small Boat and Terrorist Boat?

Figure 46. Answer Distribution for the 3rd task list. Level of difficulty in preferred mode

(Manual or Wizard)

 Notice that all answers after the third time configuring the interface are 3 or

better, with the highest density near the “very easy” end of the spectrum. The middle-of-

the-road “3” response was characterized as “had to think and experiment.” Despite the

increase in relative difficulty observed between the chart for task list 2 and that for task

list 3, the majority still found the application interface obvious after the 3rd time using the

interface.

The fourth question on the first three questionnaires concerned the wizard, and we

consider the participant answers to the wizard questions in one combined graph (Figure

47). Participants chose their answers from the options: 1) yes, 2) maybe 3) no. The

progression of the answers is interesting considering the fact that only two users used the

wizard when given the choice for task list 3.

79

Wizard Questions

0

1

2

3

4

1 2 3 4 5 6 7
Participant #

A
ns

w
er

1=
ye

s,

2=
m

ay
be

,
3=

no

Would you use a Wizard if one exists?
Would you use the Wizard again?
Did you use the wizard when given the choice?

Figure 47. Depicts the wizard question distribution.

The fourth and final questionnaire asked the participants to rate their impression

of some normal GUI tasks as well as manipulation of the 3D environment (Figure 48).

Because of a mistake made while collecting the data, the chart is not very accurate. Half

of the participants where given a draft version of the fourth task list, and all participants

answered the same questionnaire, so the results are not as consistent as the previous

questionnaires. This data is not as consistent for this measure as a result, but is presented

nonetheless for completeness. Again the 1 to 5 scale is used with 1 being the most

positive response (i.e., very easy, or vitally important).

80

Miscellaneous functions and 3D scene
manipulation

0
1
2
3
4
5

1 2 3 4 5 6 7
Participant #

A
ns

w
er

1=
ea

sy
/v

ita
l

 5
=

ha
rd

/n
ot

im

po
rt

an
t

How important is a 2D Printout?
How important is Saving a Scenario to disk?
How easy was it to run the 3D simulation?
How important is saving and Replaying 3D?
How easy was it to save the 3D simulation run?

Figure 48. Depicts the chart showing the Miscellaneous functions and 3D scene
manipulation.

Analysis of additional measures of effectiveness follow.

Measure of Effectiveness 2: Formatting of Results of simulation should be user-

friendly and meaningful.

Only visual results were incorporated for the purpose of this test. Each end-user

was able to view and interact with a 3D X3D/VRML scene in an application-invoked

instance of Netscape 4.78 displaying results for which he had planned both the defenses

and terrorist boat attack profiles. Users were able to compare this setup and the terrorist

boat profile with their 2D plot as desired. The defense manipulation was not tested other

than for scene examination and viewpoint changing. The majority of end-users found

that the 2D planning tool in itself was useful; addition of a 3D capability was considered

even more useful. More than one test subject mentioned the lack of any organic

modeling and simulation technology for any warfare area on U.S. navy ships, and wished

they had more tools besides the application we demonstrated.

81

Measure of Effectiveness 3: Feasibility of use as a planning tool as opposed to

traditional 2D Pen and Paper methods. Should be no harder than pen and paper and

require (at worst) equal time with a better result.

Once each end-user had completed one run of the application, they found it easy

to do and on-par or better than traditional planning methods. Of note, the warfare area

modeled in this application has traditionally lacked formal planning and precise doctrinal

development at the unit level. This historical situation might have lent further weight to

the some of the test-subject’s favorable comments.

Measure of Effectiveness 4: Predictable Error behavior and low error rate.

Should have the ability to redo previous entries into programming.

The biggest error source found was our placement of a “done” button at the

bottom of the 2D planning screen for both the defensive and offensive planning modes.

All tested subjects overlooked this button and were expecting something else to indicate

they were done with these panels. Also, there was the capability for redoing steps (via a

Backbutton), but that capability was not intuitively obvious to the end-user.

Measure of Effectiveness 5: Memorability, built in because of expected long

periods of time between uses.

Incorporation of the wizard mode eliminated most of the errors found in the

untrained first run manual entry test, as well as cutting the average scene creation time in

half.

Measure of Effectiveness 6: When did user expectations not match system

reaction?

After choosing the ship type in manual and wizard mode some users expected a

visual cue on the ship description screen as to where to proceed next (such as a ‘next’

button) rather than going to the top level menu for the next choice as designed. Also,

some test subjects expected in the manual mode that when choosing File->New. The

interface would bring up the configure location option automatically similar to how

Microsoft Word does with a new word document. Also, we had an inconsistency in

menu naming that confused a few users. In the view submenu we listed View Harbor,

82

but in the configure menu had Configure->Location which did not make the task of

selecting a harbor intuitively obvious to them.

Measure of Effectiveness 7: Efficiency. Do users perform the tasks in an optimal

method? If not, why?

3D viewpoint manipulation was far from optimal on the first 2 viewpoints we

asked the end-users to manipulate. By the third task in this area, they had learned the

interface well enough to navigation the 3D scene efficiently.

Manual Scenario creation mode was not optimal. Primary reason appeared to lie

in the lack of visual cues for being complete with a current step.

The manipulation of the Ship/RHIB/Terrorist Boat heading on the 2D planning

screen was the primary reason for any mouse-keyboard-mouse shifts in the planning

process. The majority of the users figured out that it was faster to enter the heading via

keyboard directly than using our self-created ‘j-spinner-like, jdk1.4’ widgets. Reason for

this may be that we only incremented/decremented the headings by 1. Increasing to 5 or

10 degrees, or letting the user toggle the increment, works better.

Real-time indication of changes in ship’s heading appeared to be an easy area to

effect improvement in the UI. The input box required a ‘go’ button be clicked to effect a

change in any of the ship’s headings. This seemed confusing to many users. They

wanted a real time indication as implemented in the Detection/Non-Lethal

Engagement/Engagement Range circles and the go buttons eliminated.

Other than the above-mentioned items, the only task mentioned that the users

wished was easier was recording a scenario. The design did not streamline the

incorporation of this at test time and this criticism was therefore expected. At test time a

separate frame was brought up to record, where instead it should be embedded within the

Run and Record selection.

Other than the keyboard manipulation for ship’s headings the following

interaction techniques were observed and planned for during the testing:

Mouse Manipulation –primary method planned for and utilized during the testing.

83

Keyboard Manipulation of 3D scene—All users initially tried, and most preferred,

the mouse for changing viewpoints and scene examination.

The only discrepancies noted were with the switch from mouse to keyboard for

heading change, which was noted above.

Measure of Effectiveness 8: User Delays.

In the wizard configuration the only delays noted were expected with the user

placement of the defensive RHIB boat and planning the terrorist boat track. Not much to

be done to reduce the ‘tactical thinking’ side of these delays other than the possible

changes to the jSpinner implementation.

In manual configuration, user delays were experienced in finding the correct top-

level menu selection. These could be minimized in a few ways: giving a ‘next’ button

choice at each level in the simulation creation as well as implementing a demo mode that

walks through all the steps and shows 3D scene manipulation.

Measure of Effectiveness 9: Errors.

The users did make errors during the testing. The following is a general

summary:

Top-Level Menu Selection: First test performed with no user training conducted

was in manual mode with a task list to see if the menu structure was intuitively obvious.

Some users selected File-New to create a new scenario, others did not. An

engineering solution would be to implement the Mediator pattern making unauthorized

top-level menu selections unavailable thereby forcing the user to select a new scenario or

load a pre-existing one.

Unsure of completion of a task in manual mode—Some users were unsure what to

do when they had completed tasks such as selecting location, ship, etc. Engineering

solutions: 1) implement a next button on these pages in manual mode that takes the user

to the next step; 2) make the desktop pane more like PowerPoint. When file new is

selected, all required frames are iconized in order on the Desktop. The user can click on

available ones to edit. Frames requiring info from previous ones might then be visually

inactive and pop up a dialog stating required steps before editing. If a frame were

84

maximized or set to fill the entire screen, put a scroll bar on the right which, when slid,

would slide from frame to frame similar to normal scroll bar behavior.

3D Viewpoint Manipulation: No user had 3D scene manipulation experience and

needed time to learn the manipulation. Engineering solution: incorporate visual screen

snapshots and an interactive (possibly audio-on) test scene 3D training mode explaining

the manipulation before running the simulation. For the experienced user, make the first

dialog brought up ask them if they wish to view these or not. Maybe also put a

configuration option in that allows hints to be brought up or not in manual mode avoiding

the ‘death of clippie’ syndrome.

Unsure of completion of 2D planning tasks in both modes: Most users were

unsure what to do when they completed planning, some users were unsure whether they

were done. Engineering solution: Steps mentioned above for the task completion in

manual mode as well as giving a status check box frame on the desktop that visually

indicates completion of a step with a check. This might be a little tricky, for it is difficult

to determine when a user is done moving the ships, waypoints, etc around the screen.

Perhaps a time-out following lost movement can pop up a hint dialogue.

All errors discovered during this test can either be engineered out or accounted for

with dialog boxes. The only step that needs to be added for catastrophic errors is

incorporating a “do you really want to exit” dialog when the user closes the desktop or

(internal frame) manually, in order to avoid unintended loss of data.

Critical Incidents:

The primary critical incident observed was the lack of an intuitive interface for

indicating to the users what to do when complete with placement of defenses or terrorist

boat configuration. Some users would close the frame; some would open the next frame,

etc. In re-design this was approached iteratively over several different ideas until the

design of leveraging the Mediator design pattern to expose only legally available next

steps in the menu selections was decided upon and implemented.

85

Learnability/Memorability:

The users found the system easy to use after one setup run with the application.

3D manipulation seemed to take manipulation of 2 different viewpoints before the

learning factor had been achieved. A few users mentioned that given a user’s manual and

a fully implemented help feature, they would have no problem running the application

with no prior formal training.

Efficiency and Error Rate:

The error rate dropped noticeably as a user’s familiarity of the system increased.

Time for completion of configuration of a scenario was noticed to increase when a user

chose to use the manual method for a third test, but their statistics were still better than

the first manual mode test conducted. The wizard mode significantly reduced errors

compared to the manual mode. The users that chose to use the manual mode for the third

run did so because they believed it would be fasted than the wizard since they ‘knew’ the

application, but none were able to out-perform their wizard mode test statistics.

Interestingly, even with this knowledge afterwards, they still preferred the manual mode.

Satisfaction and Conclusions:

The majority of users were satisfied with the system and would like to see it

online for real usage. We believe this is indicative of the lack of deployment of modeling

and simulation technology to the tactical ship level in the fleet today despite the pre-

existence of both the hardware and software to support applications such as the one we

have developed. Although these tests performed minimal testing on the 3D interface

since the design testing focus was on implementing the 2D planning interface to the

model, contradictory results were found to those in a previous study of the VRML based

Capture the Flag game-- users actually enjoyed the 3D manipulation in our application

and did not want their control of the scene limited although there is a demonstrated steep

learning factor with the 3D plug in interface in internet browsers. This appears due to the

fact of having a very focused user-base from the conception of the project, all of whom

have (and see) a need for the application developed, vice just seeing it as a game where

they may or may not be attuned to specifics of warfare specialties not their own (i.e. the

86

difficulties experienced by users during the CTF tests trying to drive a tank or helicopter

when they were unfamiliar with the control names, etc.).

Probably the best design input beyond the errors noted during the usability testing

were the comments provided by our test subjects for possible corrective engineering

solutions regarding problems they had running the simulation. As a result, a minimum of

one and probably two more rounds of usability testing need to be conducted, if

development of the AT/FP application continues. Specifically, future testing needs to

entail similar experiments as ran here, but must also focus more on the 3D interface and

analytic results from the incorporation of intelligent agent technology.

Finally, the only item that might hold back real-time deployment to the fleet

within nine months the identification, development, and integration of 3D harbors for the

application’s widespread use. Auto generation of basic 3D is possible from the available

2D chartlets, but extensibility for other threats than small boats would require the

development of surrounding land and structures in the harbor areas through contractual

support or other project expansion. As a result, the final application is implemented for

Port Hueneme California, Aden Harbor Yemen, and Pearl Harbor Hawaii.

K. USER INTERFACE REDESIGN

It was determined that no major redesign of the conceptual design was required,

only specific improvements in the interactions and interaction methods of specific

portions of the application identified by the testing conducted.

 Main Panel:

--In manual configuration mode, when menu choice File->New is selected, the

configure location dialog is displayed to the user.

--Tactical data Filename is placed at the top of the main frame, as well as for the

applicable internal frames for the scenario being configured.

Configure Location Frame:

--Include a next button at the bottom of the frame for the user to select when

ready for the next configuration step.

87

--Once the next button is selected, the frame will be iconized and placed in upper

left quadrant of the application desktop.

Configure Ship Defenses Frame:

--Ship and RHIB headings are updated in real time as the user manipulates. Go

button that was previously required to actuate changes is eliminated.

--Set Ranges button eliminated since the ID, Non-Lethal, and Lethal Engagement

ranges a already updated in real time by user input.

--JSpinner buttons for ship and RHIB heading manipulation now

increase/decrease the heading by 5 degrees vice 1 degree to minimize the number of

mouse to keyboard to mouse transitions.

--Next and Back buttons replace the Done and Cancel buttons at the bottom of the

screen. They will be in the shape of arrows. When the user is complete with the

configuration he will select the next button and the defense configuration frame will be

iconized in the lower left quadrant of the desktop.

Configure Terrorist Boat Frame:

--Terrorist Boat Heading updated in real-time.

--Spinner’s have the same increment/decrement range as for the ship/RHIB

heading manipulation.

--Same changes for Next/Back buttons and the elimination of the go button.

--Waypoint numbering changed to count starting with one vice zero waypoints,

and the number of waypoints will be updated in real time as they are selected on the GUI.

--When next is selected the current frame will be iconified in the lower right

quadrant of the desktop.

Ship Selection Frame

--Next and back buttons incorporated as mentioned above

--When iconified will be in the upper right quadrant of the desktop

88

--Shall contain a link to additional unclassified ship class information that will be

‘googled’ locally from either Jane’s online or the Federation of American Scientists web

page (www.fas.org) (accessed February 2003)

All four main frames will then be iconized on the desktop. The user will be able

to select one to reconfigure if desired. Due to the reliance of follow-on frames on their

predecessors for simulation configuration, the user will then be forced to at least

acknowledge via the next button the change in configuration on the resulting frames.

If multiple new files are opened (not tested previously), then the last one opened

will be on the desktop and the user will need to select the previously opened one via the

file menu to switch.

L. UI RESULTS AT COMPLETION OF THE FIRST ROUND OF USABILITY
TESTING

The UI look and feel improvements resulting from this first iteration of the

usability process for the ATFP Scenario generator resulted in the look and feel depicted

in Figures 49-54.

89

Figure 49. AT/FP Scenario Generator Main UI Screen from March 2002.

Figure 50. Depicts Harbor Location selection screen.

90

Figure 51. Depicts 2D Chart view of the harbor selected.

Figure 52. Depicting the ship selection screen.

91

Figure 53. Depicts the Ship Information screen, after ship selection has been made by the

end-user.

92

Figure 54. Depicts the Defense configuration screen.

M. SUMMARY

By leveraging industry standards towards usability, a more memorable, usable,

and overall higher level of quality application interface was designed and

implemented in less time than would have been possible if not using these processes.

Although time has not permitted additional iterations of this process on this

application before completion, it is recommended that anyone following this work do

so. Additionally the reader is referred to the recently created IRB process at the

Naval Postgraduate School for current guidelines and procedures necessary for

effecting additional studies.

93

THIS PAGE INTENTIONALLY LEFT BLANK

94

VII. ANTI-TERRORIST/FORCE PROTECTION MODEL DESIGN

A. INTRODUCTION

This chapter outlines the general object model design performed in the execution

of this study. Specific attention was paid to the leveraging of XML technologies to

maintain a strict separation between models and the various graphics views.

B. SCENARIO OBJECT MODEL DESIGN

Much thought was spent in designing an extensible scenario object model to

facilitate future additions and modifications of required data needed to run an anti-

terrorist scenario. The primary ideal was that an abstract base ScenarioComponent class

can be developed that is be extended by specific entities within the simulation system.

These extended entities might then be contained as composite objects inside of a primary

ScenarioClass object which also contains ScenarioStatistics and ScenarioRun classes

responsible for the gathering of statistical data for a given scenario run or run(s) initiated

by the end user. These components are listed in Figure 55.

Figure 55. UML Diagram depicting the atfp.components java package members.

So, building upon this abstract set of relationships, entities within the simulation system

can correspond to either surface entities or the land, where the land object contains all

other non-organic, or static objects within a given scenario. Entities include a terrorist or

terrorist(s), neutral(s), defensive boats, and high-value unit(s) with special attention paid

to the extension of the application towards other warfare areas at a later date. Refining

the Scenario Component ideal further, the various scenario components are represented

by Entity types shown in Figure 56.

95

Figure 56. The Entity Data Type that extends the idea of Scenario Components for

representing entities in our scenarios.

As you can see, the entity type has five categories of properties that can be associated

with it split roughly according to the Model-View-Controller design paradigm. Control

properties are separated into three sub-areas: ControlModeProperties, NetworkProperties,

and Tactical Properties.

96

Figure 57. The Location data type that extends the ScenarioComponent class in order to

represent a harbor and other inanimate objects in our simulation system.

The Location type (Figure 57) is split up in a similar manner, except it contains

additional markup information that will likely be required if trying to interface directly to

a Global Information System (GIS) based C4I or simulation system at a future date for

future work including reconfiguration or stylesheet conversion to alternative formats such

as the North Atlantic Treaty Organization (NATO) Generic Hub XML database format.

Of particular interest is the flow of control for the scenario once started. Once the

end-user has configured all of the required scenario components, an EntityController

97

class is used to manage our scenario runs. This occurs regardless of whether they are

agent driven, user driven, or a combination of the two. The EntityController object starts

all of the specific entity threads, and manages the process of both inter-thread

communication as well as managing the opening and closing of network sockets to send

DIS packets that update the entity views, as well as to receive any information for entities

that might be provided in the scenario from a networked player. The architecture for the

EntityController is based on CMAS architecture laid out by [Osborne 2002], where the

delivery of entity state information is one of the primary connector based inputs for

sensory information delivery to entity actors/agents in our simulation system (discussed

in greater detail in the next chapter). By utilization of this socket-based communication

infrastructure for manipulating the view of our scenario, the view is enabled to be

anything we would like to define, and through the utilization of a well-defined and

known network protocol in DIS, the same simulation architecture can be reused to render

a 3D view in a pure X3D system such as a web-browser plugin, Xj3D Browser, a

modified one such as NPSNET V, or even an unrelated to X3D viewing system such as a

proprietary based graphics engine. For this thesis, NPSNET-V and Xj3D were utilized as

the primary 3D graphics views, but by keeping an agnostic view on the graphics

requirements make the project less dependent on any one graphics standard or

implementation.

C. REPRESENTING SCENARIOS IN XML

Now, since the entities in the scenario object model have been defined in an

extensible and straight forward manner, it makes sense that the capability to save and

read scenario instances from disk is desirable. XML documents were chosen to be the

basis for this for a few reasons. First, the ability to leverage XML stylesheet technologies

to render varying 2D and 3D graphics views of the scenario instance files was a huge

advantage. Secondly, since the instance documents are based off a well-defined schema,

it is possible to edit scenario files with a text editor or another XML document editor and

produce valid content outside of this application. The JDOM open-source API for XML

processing in Java was chosen as the primary XML API to utilize for serializing to and

from disk in this application. The SAXON 2.0 XML API was utilized with JDOM to

read files from disk, and the DOM XML API was leveraged to apply XML stylesheets

98

within the application context. The IBM Dom4J API and Sun’s JaxB data binding API

were examined but not used in this version of the application work. The syntactical

requirements for applying any of these programming libraries proved to be

straightforward to apply by utilizing the in-depth examples provided by the library

developers.

D. VISUAL DISPLAY VS OFF-SCREEN MODEL REPRESENTATIONS

A necessary feature to truly separate the scenario model and controls from the

graphical views was creating an adequate model representation for entities and harbors

when operating off-screen vice their visual display. This basically consisted of items

such as an entity’s dimensions, physics parameters, and other control parameters. For

off-screen representation of land, the problem proved to be a bit different than for terrain

following and collision detection for land-based entities in that waterborne entities had to

be able to tell when collision with any land or another entity was imminent and provide

basic reactions to these occurrences. As a result, the java.awt.geom.Polygon class was

utilized to provide first order basic bounding box checks for these types of collisions with

good success (Figure 59).

99

Figure 58. XML Schema design view of an Entity’s properties for the AT/FP Scenario

Generator application.

100

Figure 59. XML Schema design view of how the bounding box coordinates are defined

for storage within a scenario XML instance documents.

E. DYNAMIC SCENARIO GENERATION UTILIZING XML AND XSLT

As shown in [NICKLAUS 2001], XML and XSLT have been used before to

dynamically create X3D graphics scenes from XML based Operations Orders. In this

case, however, the application wants to dynamically create 3D scenes, 2D statistical

graphs, and XHTML 2D post scenario run feedback. The basic construction process for

all of the different types of views that might be created via stylesheets consists of:

1 - Walk the XML instance document tree.

2- For each node, apply a modular XSLT template to output specific XML

matching a predefined component such as the syntax for displaying a location or ship in

3D, or creating an SVG Polyline plot, or ‘pretty-printing’ the scenario information in

XHTML.

For example, consider a high level view of an instance document such as that given in

Figure 60:

101

<?xml version="1.0" encoding="UTF-8" ?>
- <ATFPScenarioType>

- <Head>
- <TacticalData>
+ <Location>
+ <Entity>
+ <Entity>
+ <Entity>
+ <Entity>
+ <Entity>
 </TacticalData>

 </Head>
 </ATFPScenarioType>
Figure 60. Example high level ATFP Scenario XML Instance Document

We can look at a few XSLT snippets and the resulting views. First, to create a 3D view,

the XSLT starts with:

<xsl:template match="/">

 <xsl:call-template name="npsnetBuilder"></xsl:call-template>

</xsl:template>

 Figure 61. Example XSLT template invocation.

which just says to start with the root “/” of the document we’ve loaded, then call the other

defined templates contained within our stylesheet. So, one example of a subset of one of

the templates called within this stylesheet is listed here:

102

<xsl:for-each select="ATFPScenarioType/Head/TacticalData/Entity">
 <xsl:choose>
 <xsl:when test="EntityProperties/Name/. = 'DDG-51' ">

 <ccei:Entityname="org/npsnet/v/entities/platforms/surface/DDGArleighBurke.xml"
 modelName="high_value_unit">

 <ccei:Transform> <xsl:attribute name="rotation">0 -1 0
 <xsl:value-of select="EntityProperties/EntityHeading"></xsl:value-of></xsl:attribute>
 <xsl:attribute name="translation">
 <xsl:value-of select="EntityProperties/EntityPosition/XYZPosition">
 </xsl:value-of></xsl:attribute> </ccei:Transform>
 </ccei:Entity>
 </xsl:when>
 <xsl:when test="EntityProperties/Name/. = 'DD-963' ">
 <ccei:Entity name="org/npsnet/v/entities/platforms/surface/DestroyerSpruance.xml"
 modelName="high_value_unit">
 <ccei:Transform> <xsl:attribute name="rotation">0 1 0
 <xsl:value-of select="EntityProperties/EntityHeading"></xsl:value-of></xsl:attribute>
 <xsl:attribute name="translation"> <xsl:value-of select="EntityProperties/EntityPosition/XYZPosition">
 </xsl:value-of></xsl:attribute> </ccei:Transform>
 </ccei:Entity>
 </xsl:when>
Figure 62. Example XSLT template demonstrating the use of xsl:for-each and xsl:choose

for creating dynamic 3D scenarios.

The resulting 3D scene is shown in Figure 63.

Figure 63. Example 3D Scenario dynamically created through the application of an XML

stylesheet against a scenario instance document.

103

Similarly, in Figure 64 we see a rendered example of the application of XML

stylesheets for SVG displaying a multiple-run for statistics:

Figure 64. SVG depiction of a scenario run for statistics.

Finally, in Figure 65, we can see an example of XHTML that is stylesheeted from a
single scenario run for 1 run feedback to the end-user.

104

Figure 65. XHTML Scenario Feedback slide stylesheeted from an XML instance
document.

F. SUMMARY

This chapter exposes the basic design methodology utilized for representation of

the AT/FP Scenario object model, and the various ways XML technologies are leveraged

to render varying views of the resultant XML documents from an end-user configuration.

105

THIS PAGE INTENTIONALLY LEFT BLANK

106

VIII. AGENT DESIGN AND IMPLEMENTATION

A. INTRODUCTION

This section provides an explanation for the methodology carried out whilst

designing and implementing a multi-agent system (MAS) for this thesis. Agents

implement situated logic directly corresponding to friendly and hostile tactics in order to

allow the targeted end-user to gain greater tactical insights., and also to enable exhaustive

tactical evaluation to automatically assess tactical Measures of Effectiveness (MOES)

while highlighting particularly hazardous encounters.

B. USING A MULTI-AGENT SYSTEM TO GAIN INSIGTS ONTACTICAL
LEVEL OF WAR

Typically employment of doctrine at the tactical level of war for navy ships

occurs more in the discussion/experienced based context of individual wardroom or

battle-group level staffs. Unfortunately it generally involves little to no on-site analysis

of programmatic what-if’s against the warfare or ship commander’s plans. The high level

goal for the utilization of autonomous agents in the context of this research is to apply

agent technologies to show how one might be able to apply these (and traditional

operations analysis techniques) to give the warfighter a better ‘toolkit’ with which to

employ doctrine while going in harms way.

Notably this slows quantitative assessment of the specific problems posed for

utilizing agent technologies to gain insights include:

1) Analyze Chief of Naval Operations (CNO) and Court of Inquiry (COI)

recommendations regarding picket boats to defend against the USS COLE – Al Qaida

scenario.

2) To gain insight into the advantages and disadvantages of the placement of

defensive picket boats in different harbor environments.

3) To gain insight on the relationship of the distances for tactical parameters in

relation to the placement of defensive picket boats.

107

4) To determine the impact of frequency of background shipping on the

effectiveness of the tactical parameters and picket boat placement.

5) To determine possible needs for non-organic defensive support for navy ships

while in-port at a high threat level.

6) To identify further areas for study utilizing autonomous agents.

C. ANALYSIS FOR APPLYING AGENT TECHNIQUES

[Hiles 2002] details the specific design process and questions asked that were

followed during the agent design for this research. First, as outlined in chapter I and by

both [Ferber 1999] and [OSBORNE 02], we start the agent design process is started by

applying our formula for a multi-agent system, MAS={E,O,A,R,Ops, Law}, and define

each in context of our targeted environment.

1. Environment

First, the simulation environment is defined. This aspect is critical, for if we

include too little information or detail, then we risk providing false insight, and if we

provide too much we may not be able to gain anything. In this light, it must be observed

that insight gained from any form of analysis must be taken in light of a function of the

environment modeled, questions being asked, and possibilities of further parameters to

repeat the scientific process.

For this context, the outer environment, or Eouter is defined to be the area in or

about specific harbors of interest that navy ships will be berthed. The environment will

consist of the geometry of the harbor with importance placed on the defining boundaries

between the ocean and land or human produced structures. Building structures will be

incorporated at a high level, since fine resolution of detail for these structures is not

considered essential for execution of the MAS being developed. Movable objects and/or

actors will be modeled as well with basic rigid-body kinematics physics models but

dynamics models not incorporated to search for possible answers to the insights we are

looking to gain. The Eouter is then thought of as being represented specifically by two

108

things: 1) The representation of terrain object(s), and 2) the dynamic representation of all

other entities in the simulation system.

2. Objects

There are two basic object types in our environment: 1) Entities, and 2) Terrain.

Terrain objects are thought of as being composite types of objects. They can be

comprised of terrain, piers, buildings, nautical buoys, and so on. They can function as

either obstacles or resources for entities depending on the entity’s goals. Resources can

be used to ‘hide’ movement from another entity; obstacles cannot be moved through and

energy must be utilized in order to decide how to best move around. Entities are ship

entities that are in the simulation.

For the agent model, the visual display quality is not important for the outcome of

a scenario run or runs, but might be considered necessary to increase the immersive

experience of the end-user when utilizing our system. As a result the essential attributes

of terrain objects are their locale in the virtual world, and dimensions based about this

locale (specifically their length, width, and height). Essential for viewing a running

scenario are the attributes of the primary, secondary, and tertiary graphics representation

of these objects and the subcomponent requirements of these files, in our case X3D

graphics and VRML97 files. Essential attributes for entity objects in addition to those

for terrain objects are the various physics components required for implementation of

rigid body kinematics such as maximum speed, minimum speed, turning rate, rate of

acceleration, and so on.

3. Agents

The primary actors that possess intent and can act autonomously are defending,

attacking, and neutral ships. They can act autonomously, or in a non-deterministic

fashion by allowing zero, one, or more to be driven by human-in-the-loop controllers

compared to always maintaining total autonomy.

The elementary operations of these actors are:

1) Ability to move a given distance during a given time step in the simulation

2) Ability to increase or decrease speed

109

3) Ability to effect a change in the direction of movement vector

4) Basic reactions for collision with terrain objects or other entities

5) Ability of defending agents to intercept other agents

6) Ability of attacking agents to effect a TNT equivalent detonation of their

entity against another

7) Ability to drive to a goal based position: for neutral entities to a given locale;

for attacking entities towards the target of choice; for defending entities to

intercept other entities that might be threats.

Defending and attacking entities are distributed at the start of a simulation run by

end-user setup in a 2D user-interface environment. The frequency, but not location of

neutral entities is chosen by the end-user prior to running a simulation. Once the

simulation is initiated, entities change over time by proceeding or changing position

based on their desired goals. The change in position is effected in a real-time simulation

model driven by dynamic based timesteps, generally occurring about 30 time per second.

Specific decisions that situated (agent or human) entities must make are:

1) Have I collided with anything (ie a terrain object, another entity?)

2) Do I want to move? If so in what direction and at what speed is best to move

in?

3) If I’m defending another entity, when do I want to move to intercept another

entity? When do I cease intercepting an entity?

4) If I’m attacking another entity what is the best way to move there? When do I

attack the entity? Can I be deterred? If so in what manner do I act? If I can be

intercepted, what parameters are necessary for this to occur?

While effecting these decisions, the defending and attacking entities can

be thought of as being in competition, with the neutral entities also competing on the

basis of taking up sea space and wanting to move to a desired location in the world.

110

The goals of defending entities are defined as a function of the input of tactical

parameters by the user configuring the simulation. At the given Identification Range,

they must try to identify all surface craft entering this range. At the Intercept Range they

must intercept all entities proceeding towards the defending entity. At the Lethal

Intercept range they must utilize any weaponry onboard.

The goals of the attacking agents are to proceed in light of their personality

towards an effective attack against the entity being defended. They can either have the

attribute of being able to be deterred, attacking at all cost, or a hybrid consisting of values

in-between.

The goals of the neutral agents are to proceed to their desired point of travel. If

queried for intercept to either stop or continue movement until forced to stop.

4. Relationships

Relationships are defined during scenario configuration. Defending entity and

applicable tactical parameters are defined. The duration is for the length of a given

scenario ending either by a successful defense or attack. They are cooperative in nature.

Attacking entities are also defined in the same manner but are considered to be

competitive in nature. They can be cooperative with a neutral entity for purposes of

concealment from the defending entities.

5. Operations

All entities can perform the operation of movement within the scenario

environment. Additionally attacking entities can affect an attack through self-detonation

and defending entities can conduct movement for the purposes of patrol, search, or

interception of other entities.

6. Laws

There are two types of global information defined in our system. The first is

the geometric layout of the terrain object(s) as represented in three space. The

next is the locale, direction, and speed vectors of the actors in our system. The actors do

not have omnipotent knowledge of Eouter , so this view will be limited based on the

111

entity’s determined line of sight before being passed to EInner . In the same manner,

knowledge of terrain objects will also be limited.

Actions based on connectors being bound at runtime may be changed by the

individual agent if past performance for a given ticket or sequence of tickets is deemed to

be unsatisfactory.

Entities must effect actions based on the collision with terrain objects or other

entity objects to keep from violating the system parameters.

D. REPRESENTATION

The audience for this MAS are the same as outlined previously in the usability

study. Specific data generated by agents include the real time based position data of all

entities within the system in addition to the decisions being made. Positioning

information will be depicted in real time in X3D graphics, non-real time with statistics

generated from non-rendering simulation runs, as well as being able to view scenarios as

they iterate over multiple generations. When running offscreen, data for scenario results

are collected and displayed to the user at the completion of execution. During scenario

runs, the agent brainlid’s depicting what the agent thought process is can be viewed. At

the completion of a scenario run, the user will be informed as to the single scenario run

results, and allowed to review screen captures of the scenario configuration of defenses

and attacking craft to gain insight into relationships between the various parameters.

E. APPROACH

The high-level view of an actor in our system can be thought of as being rigidly

separated into its model, view, and controls. Specifically, we are concerned with the

control portion for our MAS system. All agents receive inputs from Eouter which are

provided to the Symbolic Constructor Agent (SCA). The SCA then filters the input

stream of information before providing it to EInner . The Reactive Agent (RA) then makes

decisions on what actions it wants to effect based on the currently received feedback from

the environment and any other inputs it may have on the inner environment. It then

passes the stream of tickets or frames consisting of tickets to the Action Agent who de-

conflicts the actions and effects the applicable ones on Eouter . In the case of user control

of an actor, the same architecture is utilized, except the user chooses what actions to take

112

and the same agent structure is utilized to enforce the applicable environment laws on the

entity’s interaction with the environment.

The Template Manager (TM), is responsible for managing the connectors for the agent

and the associated tickets or frames. In the case of user control, it still manages

connectors that handle cases such as collision with terrain objects and other entities. The

agent architecture is summarized in Figure 66.

Actor

View X3D Graphics, VRML97
Model Provides constraints on our

controls (ie length, width, maximum
speed, minimum speed, etc)

Controls
(either User or Agent on

a per-agent basis)

User Agent

Figure 66. Depicts the agent architecture for user or agent control modes.

The Template Manager maintains a container of multiple Templates (see Figure

67). A template is defined to be a container that consists of various predefined

connectors with associated vectors of possible frames of tickets to be acted upon if the

connector receives a corresponding connection. The container of connectors for a

template may be retracted, or added to at runtime based on the agent’s performance in the

environment. Additionally the frames consisting of tickets of possible actions for a given

113

connector may be switched, changed, modified, deleted, or added to at runtime based on

the micro performance feedback of that particular sequence of actions from the

environment. We can think of the dynamic creation of a new template, connector, or

frame of action for a connector to be a micro implementation of the ideal of Blending

discussed in [Hiles 2003], [Fauconnier 2001] with much room for future research in this

area.

The template manager maintains an active template which provides information

for effecting actions for the agent, but also concurrently provides feedback to the non-

active templates it may have so that if the currently active template is performing poorly

on the macro level it may perform a context switch to an alternative way of acting in

order to possibly change the potential outcome of the given situation. Thought must be

given here in the structure of the experiment. On the one hand our targeted audience may

want to run the simulation in a ‘rule-finding’ type of mode, where they try to groom or

allow the agents to discover alternative and better templates of perception in which to act,

but could become frustrated if starting from scratch with templates that might visually

make no sense when the scenario runs. So, running the simulation in rule-finding mode

previous to deployment is essential in order to provide a starting part for the agent

system.

114

Figure 68. Depicts the Template Manager Structure.

The actions that comprise a ticket consist of basic tokens that can be combined to

represent different forms of action for the agents. They consist of items such as TURN,

SPEED, ATTACK, INTERCEPT, and associated values for each. A frame can consist of

multiple combinations of these actions.

The process of creating new connectors with corresponding frames is similar to

that of creation of a new template. If a current connector and frame, or a template, are

reaching a low threshold from feedback, the Template Manager implements a low level

form of blending where it treats the current pool of templates. If connectors are shared

amongst the current templates, then they can be placed in the newly created one either

separately or combined with the same rules applying to frames.

The Reactive Agent is responsible for providing feedback on the performance the

given active template and the Template Manager coordinates the lower level feedback of

115

individual frames within the template structure. In the case of an Actor that is in user-

control mode, there is no dynamic creation of frames or templates since the agent

structure is being utilized solely for the enforcement of the laws we have implemented for

our environment.

F. SUMMARY

In summary, the agent architecture implemented for this thesis has been presented

 and reviewed. Areas for future research in this arena include but are not limited to:

1. Extension of the current model to include multiple threats and defending craft and

the investigation into communication requirements and impact on potential

insights for the experimenter.

2. Further exploration of the idea of Blending as presented in [Hiles 2003], but with

application towards the tactical level of war and the impact of human

performance. [Wellbrink 2003]

3. Exploration into the utilization of tactical level agent model layers into an agent

driven Operational Level of War model to deal with the Asymmetric threat

against naval shipping.

4. Investigation into how to leverage traditional Operations Analysis techniques with

emerging agent based technologies to best provide warfighters with tactical and

operational level analysis tools for use in the field.

116

IX. EXEMPLAR USE CASES

A. INTRODUCTION

This chapter first presents different application-deployment options and

methodologies investigated during the course of this research. An in-depth use-case of

how one would configure and run a scenario instance is then examined from start to

finish providing in-depth explanation of the various steps.

B. APPLICATION DEPLOYMENT AND UPDATES

Although the Java programming language was developed and deployed to be

Operating System independent, the ability to enforce specific Java versions on the

targeted client machine remains problematic without examining and deploying an

installation strategy. To this end, the following technologies were investigated in an

effort to find a solution for the targeted end-users of this work:

1. Heavy-weight Client-Side Applications

The ideal of a heavy-weight client application [JNLPSPEC 2000] means that we

force the end-user to spend time on the first installation of our application, but that on

successive application runs the user waits little to no time for running the application.

Two web-based technologies investigated to this end were Sun Microsystem’s JNLP and

Web-Start and ZeroG.com’s applet based installation-creator program, Install Anywhere.

1.0 JNLP and Web-Start

JNLP and Web-Start have a great deal of potential for the future of web-

deployment of Java technologies. The JNLP file is an XML based delivery file

referenced within the HTML or XHTML of the web-page a client has opened. It contains

references to such things as the required version of Java, version dependencies, the code-

base to download, etc which is then downloaded and launched in the Web-Start browser

in a separate security sand-box from the traditional web browser sand-box. The first time

that an application is launched in this manner it is downloaded in its entirety, with

successive runs doing a timestamp check with the downloaded code-base’s URL for

incremental updating of required resources. An example invocation of the Java Web-

117

Start application manager desktop is shown in Figure 69.

Figure 69. Example of the invocation of the Java Web-Start Application Manager

desktop.

2.0 Applet-Based Installation same

The next deployment option investigated (and ultimately settled up on) was the

ZeroG.com commercial Java based installation creation application Install

Anywhere(Figure 70). Ease of use and quality of finished product were the primary

motivators in this selection. The application allows one to set complicated application

classpath and path settings in a what-you-see-is-what-you-get (WYSIWYG) manner,

make a native binary executable to invoke the Java application with a privately built and

crafted Java Runtime Environment (JRE) allowing the client computer to maintain its

own version of the Java programming language run time environment separate for each

application that relies on a specific version or library. Ease of installation for end users is

excellent, reliable, and completely thorough. A typical installation configuration screen

is shown in Figure 71.

118

Figure 70. InstallAnywhere from ZeroG.com installation action configuration screen for

creating the ATFP Scenario Generator application installation.

119

Figure 71. Resulting installation Java Applet for the AT/FP Scenario Generator

application.

C. SCENARIO CREATION

Similar to what was developed during the initial usability study, iteration on the

same design process continued for adding greater functionality during the remaining

development of this thesis and making corrections for shortcomings as they have made

sense to do so. First, the steps required to create an AT/FP scenario to the point of being

ready to view it are covered.

 When the end-user first starts the application they are presented with the screens

shown in Figures 71 and 72.

120

Figure 72. Depicts the main application content display for the ATFP Scenario Generator

Application.

Figure 73. Depicts the Scenario Configuration Startup options the user can select from to

initiate an application session.

We will first review the manual configuration modes the user must step through.

The next step is to select a harbor from the available listing of ports in the menu selection

(Figure 74).

121

Figure 74. Depicts the available menu selection for choosing a harbor for a scenario run.

For this example we will walk through a short scenario setup that takes place in Pearl

Harbor, Hawaii. The next screen presented to the end-user is a 2D chart or overhead

image of the selected location to give a rough feel for the area being configured. We

can’t assume the end-user has been to the port being planned for in this defensive setup,

but can consider it a good possibility, so we just include the chart and/or imagery for this

purpose as depicted in Figure 73.

Figure 75. AT/FP Scenario Generator after the user has chosen Pearl Harbor, Hawaii as

the location for the planning.

122

The user’s next step is to configure the frequency of background shipping for the given

port or area through a simplistic radio button assignment and selection process (Figure

76).

Figure 76. Depicts background shipping frequency configuration.

The next step for the end-user is to select a high value unit (HVU) to model and further

configure the defensive setup he or she will have to protect this ship (Figure 77). These

configurations consist of manipulation of the ranges of defensive parameters and

configuring further model and control properties for the various entities within the

scenario.

123

Figure 77. Depicts available ships for the AT/FP application.

Once the user has selected a high value unit, specific information on the platform is

displayed as a web page from cached unclassified information from the Federation of

American Scientists (FAS.org) web site (Figure 78). If the client machine is on an active

network, then this information is displayed live and hyperlinks are selectable for further

information searching to aid in any training needs the user may have.

Figure 78. Ship Information Screen that is displayed after the user selection.

124

Following this selection, the user configures the defensive setup for the current scenario

(Figure 79).

Figure 79. Defensive Setup configuration for the ATFP Scenario Generator.

The defense setup is focused on defense against the surface-borne terrorist threat and

consists of placement of the HVU, placement of a defending picket boat, and

configuration of tactical range parameters for identification, intercept, and lethal

engagement of approaching craft. Additionally, the user has the option to select agent

control or user control in addition to setting picket boat model parameters for use in the

scenario as depicted in Figure 80.

125

Figure 80. Depicts available options for the configuration of picket boat model

parameters.

Once these steps are completed, the user can now configure the terrorist boat

threat to run against the defensive arrangement. Done in a similar manner, the user is

able to place the terrorist boat and select agent or user mode with similar model

parameter exposure available as for that of the picket boat (Figures 81 and 82).

126

Figure 81. Depicts the terrorist boat attack profile setup.

127

Figure 82. Depicts Terrorist Boat model parameter configuration panel.

The scenario is now fully configured and able to be run visually or off-screen for

statistics depending on the end-user’s needs.

D. SCENARIO VIEWING OPTIONS

At this point, the user has a few options available to for executing the configured

scenario. The user can view in 3D to gain visual insight to possible defensive plan

shortcomings, experience emerging tactical situations from the surface perspective of

protagonist / antagonist, or execute non-rendering runs for statistical data collection.

128

Figure 83. Depicts available menu options for running the scenario once configuration is

complete.

1. 3D View

When the 3D View option is selected, the application creates the 3D scenario

dynamically by applying the applicable XML stylesheet to the current scenario instance

document. The scenario instance document is serialized to disk if the user has not saved

the application with the default filename ATFPNewResult.xml. The 3D scenario is

quickly created, then loaded into the application desktop. Once loaded, the agent and (if

applicable) user controls are started and the scenario can begin (Figure 84).

129

Figure 84. Depicts the 3D view of the scenario in action from the rear perspective of the

hostile agent-driven terrorist boat.

When a visual run is completed, the scenario pauses for a few moments, then

displays the single run results to the end-user in case they had their attention diverted and

did not see the outcome of the attack.

130

Figure 85. Depicts one run results for an AT/FP scenario run.

The user is then presented with three options as shown in Figure 86: 1) View

results of another scenario run , 2) run for statistics, or 3) start a new scenario. Additional

single-run results consist of displaying tactical data utilizing an XML stylesheet from

[MNIF 2003], in addition to a second XHTML page that depicts scenario setup

information visually in the form of screen snapshots taken while the user was in the

configuration phase of the scenario setup.

131

Figure 86. Scenario options presented to the end user after a single-scenario run.

2. Non-rendering Scenario Runs with Statistics

When run without rendering, the user is able to iterate over multiple scenarios in

less time than visually running multiple scenarios. However, since the simulations are

using a real-time physics based scenario model there is a limit to the speed-up possible.

Further optimization is possible as future work. An example of the SVG results of

multiple runs for statistics is shown in Figure 87.

Figure 87. Statistical output from ten scenario runs rendered in SVG graphics.

132

E. USING PREVIOUSLY CONFIGURED SCENARIOS

The ability to save scenario files to disk and reload at a later time became an

essential feature once the number of locations and ship types supported in the application

grew. For this reason, the end-user is able to do both.

To load and view from disk, the user can either choose to open a scenario file

from the wizard menu or from the file menu using a standard file-chooser manner

common to most modern windowing applications (Figure 88). If the file chosen is not a

valid AT/FP Scenario Instance file, then an error message will be displayed to the user

and retry is permitted. If the file loads satisfactorily, then the defensive scenario

configuration screen is automatically loaded. If no changes are desired, the user simply

has to select the ‘NEXT’ button at the bottom of the defense and terrorist configuration

screens in order to proceed to executing a visual or non-rendering run for statistics.

Figure 88. Depicts the File Chooser dialog for opening a scenario file from disk.

133

F. SUMMARY

This chapter describes scenario configuration, viewing, and loading features of

the AT/FP scenario configuration application. Additionally, deployment strategies

investigated and developed during the development of this application are presented.

134

X. APPLICATION TOWARDS U.S. NAVY TRAINING,
EDUCATION AND EXPERIMENATION

A. INTRODUCTION

During the course of this thesis, we partnered with colleagues from the Naval

Postgraduate School’s Wayne E. Meyer Institute of Systems Engineering to take

advantage of several research opportunities that would not have been possible otherwise.

Namely, we were able to explore modeling and simulation work for visualizing and

playing ‘what-if’ scenarios in the context of Commander Third Fleet Limited Objective

Experiments focused on Anti-Terrorism and Force Protection. We also gained exposure

to current doctrine methodologies being examined for implementation and dissemination

through the U.S. Navy’s training and education system.

B. LIMITED OBJECTIVE EXPERIMENTS

Two of the Wayne E. Meyer Institute’s primary goals are : 1) to integrate and

enhance existing systems engineering programs at the Naval Postgraduate School and 2)

to provide unique graduate education opportunities through experimental design,

coordination, and execution. This proved to be the case early in the course of this thesis

research by being afforded the opportunity to create a real time simulation of

implementation of experimental non-lethal weapons technologies being examined for use

in a live experiment at Naval Base Port Hueneme, California (Figures 89 and 90).

135

Figure 89. Depicts the entry level view for the LOE real time simulation depicting 2D

imagery with exercise tactical data prior to viewing the 3D scenario.

Research and development in a pure web context utilizing basic agent

technologies to assist the analysis of the limited objective experiment (LOE) execution

prior to the experiment taking place was one of the primary motivators for the initiation

of this phase of the thesis research. The LOE planners requested development of

visualizations of the primary scenario events and the proposed area of operations to aid

with their pre-experiment planning and post event reconstructions. [Blais 2002B] Of

particular note: while creating a preconstruction of possible scenario events or

conducting a static reconstruction following the experiment’s conclusion can prove

interesting, being able to play ‘what-if’s’ to gain greater insight towards execution

of future exercises or real events proves to be one of the true powers of modeling

and simulation (M&S) technologies.

Therefore, agent-based technologies were incorporated early in the thesis work to

investigate a greater spectrum of potential outcomes to enable an end-user or analyst to

136

possibly gain greater insights (Figures 91 and 92). As a result, the web-based virtual

environment becomes an experimental laboratory supporting investigation of what really

occurred and the manipulation of model parameters and other factors to see what could

occur.

Figure 90. Depicts the conceptual view of a non-lethal net engagement system being

modeling prior to use onboard a U.S. Navy rigid hull inflatable boat(RHIB).

For the LOE, the use of multi-layered agent-based technologies allowed the

analyst to leverage the simulation in several manners. First, was to gain insight on the

employment possibilities of a non-lethal net entanglement system to be deployed from a

defending RHIB boat against incoming threat craft. Specific items of interest to the

experimenters for this capability were: 1) the ability to run various threat profiles against

pre-configured defensive postures in order to make the most effective use of real-world

experiment assets, 2) the capability to try different variations of defensive behaviors to

gain insight towards the most effective employment means of the entanglement net, and

3) the ability to experiment with AT/FP doctrine under development for handling the

137

detection, sensing, decision, and engagement components of the tactical employment of

defenses.

Figure 91. Depicts a defending RHIB boat
in user-control mode for the LOE simulation

run.

Figure 92. Depicts the graphical
representation of an attacking surface craft in
agent-control mode. The red sphere depicted

is indicative of the high value unit’s lethal
engagement range for this scenario run.

Next, when setting up the experiment, there was a need for a means to gain

insight for where shipping exclusion zones need to be placed with respect to the mooring

location of high value units in the harbor. With the ability to dynamically define the

experiment setup, initiate a scenario run, and view possible threat axes that would place

the defensive units at a disadvantage, one could either use this information for better

defensive setup or to better configure an attack to test shipboard defenses vice picket boat

defenses.

Also, the effect of decision-making time on the execution of defensive doctrine

can be examined with the impact on the probability of success of various defensive

configurations. Additionally, the experimenter could decide to iterate over multiple

scenarios with the same input parameters for the various models to see if statistical

insight can be gained for the given set of inputs. Some questions that were looked at in

this manner were insights to tactical parameters such as the optimal picket boat

placement against the surface threat, effective ranges to configure tactical parameters

based on the harbor geometry configuration, and insight into placement of defensive

138

layers in order to best stymie a terrorist attack. In this manner, the analyst can have this

information available to decide how to best arrange the forces participating in the LOE

and avoid wasting money or time unnecessarily with bad experimental runs in the field.

The ability to operate with the human in the loop was also incorporated so if the analyst

had a specific ‘what-if’ tactic that he or she wished to run they could do so without

having to try and figure out how to force the agent model to replicate exactly the threat

profile or behavior desired, if possible at all.

 Scalable, dynamic, multi-user simulation for this research was achieved by

integrating the Distributed Interactive Simulation (DIS) standard protocol [IEEE 1995],

Java software, and the VRML graphics format (obtained from translation of X3D files)

[Brutzman 1998]. The DIS protocol was used to communicate state information among

the multiple entities either participating on a shared network or on a single computer.

For the LOE simulation work, the DIS-JAVA-VRML integration was effectively used as

the means to control and render the simulation based on user or agent control inputs.

C. LEVERAGING EMERGING WEB-BASED VISUALIZATION FOR
TRAINING AND EDUCATION

 From the LOE simulation work evolved a continuing working relationship with

the Wayne E. Meyers Institute. Research continued along the lines of investigating what

the actual tactical process should be for shipboard crews operating in hazardous port

environments and providing feedback to the analyst on the impact of non-standard

execution of strictly defined doctrine. Specifically, providing both tactical feedback such

as that shown in Figures 93 and 94 after scenario runs as well as providing dynamic

information in the context of scenario configuration were added to help the thesis

application be leveraged as both a simulation and training tool.

139

Figure 93. Depicts styled tactical data created and made available to the end-user after

viewing a scenario iteration. [Mnif 2003]

140

Figure 94. Depicts screen snapshot of the visual setup for the terrorist attack profile
configuration to aid the end-user in evaluating the outcome of their defensive plan

occurred.

As mentioned in a previous section, tactical data on the high value unit and other

entities can be viewed in a standard web fashion by the end-user if they are utilizing the

application in either a learning environment or as a ‘non-expert’ user with the ability to

continue hyper-linking to other web-enabled information when the application is placed

on an unclassified or secure network environment (e.g., Figure 95).

141

Figure 95. Depicts cached web information on the Ticonderoga class Cruiser displaying

ship configuration information that might be interesting to the end-user.

D. SUMMARY

 In summary, this chapter described how this thesis was leveraged in conjunction

with Wayne E. Meyer Institute of Systems Engineering personnel to effect research

towards application of modeling and simulation for experimentation, training and

education. Current research continues for both identifying how to best leverage the web

technologies utilized in this thesis within the Naval Education and Training pipeline and

examining possibilities for use to aid in the development of a Concept Of Operations

(CONOPS) for the U.S. Navy Spartan ‘Scout’ Unmanned Surface Vehicle (USV) for

assured access and force protection. [Hundt 2002]

142

XI. CONCLUSIONS AND RECOMMENDATIONS

A. GENERAL THESIS CONCLUSIONS

The application of current and emerging web standards with agent-based

technologies can be leveraged now to aid the warfighter in gaining insight for fighting

current and future asymmetric threats. Using XML as a backbone data-centric

architecture to base visualization and scientific modeling and simulation development

proves to be both a powerful and extensible means with which to leverage IT-based

efforts to bring modeling and simulation to planning tactical operations of war. This

thesis contributes to current and ongoing efforts within both the Department of the Navy

and the Naval Postgraduate School’s MOVES Institute in the utilization of web-based M

& S for defense against the ongoing threat of terrorism.

B. SPECIFIC CONCLUSIONS AND RESULTS

1. Easy, Dynamic Scene Creation

One of the primary goals of this thesis was to enable the end-user to be able to

easily configure virtual environments at runtime. To achieve this, the process of: 1)

defining the problem, 2) creating an example prototype scene, 3) defining an XML

schema that represents the scene components, and 4) binding to an intuitive user-interface

for WYSIWYG selection and configuration of scene components was utilized.

Combined with the use of XML programming and other open, web based technologies,

this process is both extendable and repeatable.

2. Real-Time Scene Interaction

Another goal of this thesis was once AT/FP scenes of interest could be

dynamically created, was to enable them to be run-time extensible. This was achieved

through the use of a socket-based architecture. Adding both agent-based and user driven

controls for scenario entities that send controlling network packets from the DIS-JAVA-

VRML network protocol, AT/FP simulations are able to be run in agent only mode, user-

control mode, or a combination of each. This capability enhances us of the application to

gain insight for defense against the water-borne terrorist threat.

143

3. Laboratory for Experimentation

This thesis work provides a laboratory for experimentation for both the warfighter

as well as for the researcher. Typically, much time, effort, or money must be expended in

order to create a suitable environment with the necessary components in to conduct

specific research in artificial intelligence or human behaviors. This thesis implements an

agent model in a componentized fashion so that follow-on work can augment or replace-

in-full the work done in this area whilst leveraging the same graphics, model, and XML-

based infrastructure. In the conduct of this work, specific relations between the scenario

input parameters of background shipping frequency, harbor geometry, tactical parameter

configuration, defensive picket boat placement and configuration, and threat

configuration and profile were found. Specifically, as the rate of background shipping

was expected to be higher, the tactical parameters relating to identification and

interception ranges had to be compensated for in order to maintain a suitable

effectiveness percentage for a given defensive posture.

4. Applications for Navy Training and Education

During the design and implementation of this thesis, we found that there are two

areas of application of M & S tools within the current navy training and education

system. First, using this work, experienced users can gain insights about the physical

layout of a harbor they may not have visited before by visualizing different and varying

defense scenarios against terrorist threats. These capabilities proved more valuable than

traditional 2D paper chart based planning methods. Secondly, by incorporating the

ability to view and dynamically web-surf or query information on the capabilities and

limitations of the naval platforms that can be selected in the application it also serves as a

teaching platform for junior personnel.

C. RECOMMENDATIONS FOR FUTURE WORK

1. Coordinated Development with the U.S. Navy AT/FP Schoolhouse

This research can be further extended and modified in coordination with the U.S.

Navy AT/FP school house. Specifically, research can be targeted to providing immediate

visual and statistical feedback to students in the context of currently developed course

144

modules. The focus can range from extending the capabilities of the existing model in

order for the students to be able to ask more varied questions on how the different input

parameters play a role in the tactical effectiveness of a defensive plan against the surface

threat, to expansion of the threat areas currently modeled to include shore, air, and sub-

surface threats. Additionally, specified research can be focused on measurements of a

student’s retention of course objectives when using this work to provide compelling

feedback and training for defensive plan implementation.

2. Modification for Use with the Spartan Unmanned Surveillance Vessel

Perhaps one of the more interesting research directions lies in investigating

research possibilities with the Navy autonomous surface craft, Spartan, for port defense.

[Hundt 2002] Future work could include but is not limited to the agent control design for

the craft to best effect a patrol and search of a harbor to which it is deployed, extension of

this work to provide a control interface and feedback system for operators of the craft,

and extended possibilities.

3. Continued Applied Autonomous Agent Research

Further agent research is encouraged in the following areas:

i. Extension of the current model to include multiple threats and defending craft

and the investigation of communication requirements and impact on potential insights for

the experimenter.

ii. Further exploration of the idea of Blending as presented in [Hiles 2003], but

with application towards the tactical level of war and human performance degradation.

[Wellbrink 2003]

iii. Exploration into the utilization of tactical level agent model layers into an

agent driven Operational Level of War model to deal with the asymmetric threat against

naval shipping.

iv. Investigation into how to leverage traditional Operations Analysis techniques

with emerging agent based technologies to best provide warfighters with tactical and

operational level analysis tools for use in the field.

145

THIS PAGE INTENTIONALLY LEFT BLANK

146

APPENDIX A. ACRONYMNS AND ABBREVIATIONS

AA Action Agent

AT/FP Anti-Terrorism / Force Protection

API Application Programmers Interface

CA Composite Agent

CAD Computer-Aided Design

COMPACFLT Commander-in-Chief Pacific Fleet

CMAS Connector-based Multi-agent System

CONOPS Concept of Operations

CPDU DIS Collision Protocol Data Unit

CPU Central Processing Unit

CTF Capture The Flag

DES Discrete Event Simulation

DIS Distributed Interactive Simulation, IEEE network protocol for

behaviors

Ds Change in displacement

Dv Change in velocity

Dt Change in time

DoD Department of Defense

DPDU DIS Detonation Protocol Data Unit

DSDE Detect-Sort-Decide-Engage

Einner Inner Environment

EOuter Outer Environment

147

ESPDU DIS Entity State Protocol Data Unit

FPDU DIS Firing Protocol Data Unit

GIF Graphics Interchange Format for image files

GIS Geographic Information System

GUI Graphical User Interface

HTML Hypertext Markup Language

HVU High Value Unit (typical large surface naval vessel)

JPEG Joint Photographic Entertainment Group format for image files

IP Internet Protocol

ISO International Standards Organization

IT Information Technology

IT-21 Information Technology for the 21st Century

JNLP Java Network Launch Protocol

LOE Limited Objective Experiment

LSVE Large Scale Virtual Environment

M&S Modeling and Simulation

MAS Multi-Agent System

NIMA National Imagery and Mapping Agency

NATO North Atlantic Treaty Organization

NPS Naval Postgraduate School

OS Operating System

PC Personal Computer

PNG Portable Network Graphics format for image files

RA Reactive Agent

148

RHIB Rigid Hull Inflatable Boat

SAVAGE Scenario Authoring and Visualization for Advanced Graphical

Environments

SCA Symbolic Constructor Agent

SGML Standard Generalized Markup Language

SVG Scalable Vector Graphics

TM Template Manager

UI User Interface

USMTF United States Message Text Format

USV Unmanned Surface Vehicle

X3D Extensible 3D Graphics

XHTML Extensible Hypertext Markup Language

XMSF Extensible Modeling and Simulation Framework

XML Extensible Markup Language

XSLT Extensible Stylesheet Language for Transformation

VRML Virtual Reality Modeling Language

W3C World Wide Web Consortium

WYSIWYG What-you-see-is-what-you-get interface

149

THIS PAGE INTENTIONALLY LEFT BLANK

150

APPENDIX B. MANUAL CONFIGURATION TASK LISTING

Manual Configuration Task Sheet

 Participant Number:

Benchmark
Task
Number

1 Starting the App
 (Make notes about user questions and ability to start the application)

 Once the app is started ask the participant to choose Manual Mode and then note the time.

 START TIME

2 Manually Choose harbor
 (Choose Port Hueneme as the harbor for this scenario)
 Good clicks/Key strokes

 Keyboard to mouse
moves

 Errors

3 Manually Choose ship
 (Choose DDG-51 Class ship for this scenario)
 Good clicks/key strokes

 Keyboard to mouse
moves

 Errors

4 Manually place the ship and small boat
 (Tell the user which pier to place the ship along, and where to put the small boat.)
 Good clicks/key strokes

 Keyboard to mouse
moves

 Errors

5 Manually Choose a small boat attack
 (Ask the user to select a terrorist small boat attack)
 Good clicks/key strokes

 Keyboard to mouse
moves

151

 Errors

6 Manually place the terrorist at a start point of the attack path

(Ask the user to place the terrorist boat in a general
location)

 Good clicks/key strokes

 Keyboard to mouse
moves

 Errors

7 Manually choose waypoints for the terrorist attack path
 (Ask the user to place the terrorist and use 4 waypoints to designate the attack path)
 Good clicks/key strokes

 Keyboard to mouse
moves

 Errors

 Once the last waypoint is placed, note the stop time.

 STOP TIME
8 Give the subject Q and A sheet #1

152

APPENDIX C. MANUAL CONFIGURATION QUESTIONNAIRE

Q and A sheet 1

 Participant Number:

Please mark your answer the following questions:

 Overall, how easy was it to figure out how to configure the scenario you just completed?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 How easy was it to select a Harbor and a Ship type?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 How easy was it to place the Ship, small boat and terrorist boat?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 If there were a step by step Wizard to guide the configuration, would you use it?

Yes Maybe
(It depends

on the
wizard)

 No

153

THIS PAGE INTENTIONALLY LEFT BLANK

154

APPENDIX D. WIZARD CONFIGURATION TASK LISTING

Wizard Configuration Task Sheet

 Participant Number:

Benchmark
Task
Number

 Restart the application
 (Make notes about user questions and ability to close and restart the application)

 Once the app is started ask the participant to choose Wizard and then note the time.

 START TIME

9 Choose harbor
 (Choose Port Hueneme as the harbor for this scenario)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

10 Choose ship
 (Choose DDG-51 Class ship for this scenario)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

11 Place the ship and small boat
 (Tell the user which pier to place the ship along, and where to put the small boat.)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

12 Choose a small boat attack
 (Ask the user to select a terrorist small boat attack)
 Good clicks/keystrokes

 Keyboard to mouse
moves

155

 Errors

13 Place the terrorist at a start point of the attack path

(Ask the user to place the terrorist boat in a general
location)

 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

14 Choose waypoints for the terrorist attack path
 (Ask the user to place the terrorist and use 4 waypoints to designate the attack path)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

 Once the last waypoint is placed, note the stop time.

 STOP TIME
15 Give the subject Q and A sheet #2

156

APPENDIX E. WIZARD CONFIGURATION QUESTIONNAIRE

Q and A sheet 2

 Participant Number:

Please mark your answer the following questions:

 Overall, how easy was it to configure the scenario using the Wizard?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 How easy was it to select a Harbor and a Ship type?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 How easy was it to place the Ship, small boat and terrorist boat?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 If you had to use this application again, would you use the Wizard?

Yes Maybe No

157

THIS PAGE INTENTIONALLY LEFT BLANK

158

APPENDIX F. USER CHOICE CONFIGURATION TASK LIST

Users Choice Configuration Task
Sheet

 Participant Number:

Benchmark
Task
Number

 Restart the application
 (Make notes about user questions and ability to close and restart the application)

 Once the app is started ask the participant to configure a scenario again and note the time.

 START TIME
User chose Manual or
Wizard?

16 Choose harbor

 (Choose Port Hueneme as the harbor for this scenario)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

17 Choose ship
 (Choose DDG-51 Class ship for this scenario)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

18 Place the ship and small boat
 (Tell the user which pier to place the ship along, and where to put the small boat.)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

19 Choose a small boat attack
 (Ask the user to select a terrorist small boat attack)
 Good clicks/keystrokes

159

 Keyboard to mouse
moves

 Errors

20 Place the terrorist at a start point of the attack path

(Ask the user to place the terrorist boat in a general
location)

 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

21 Choose waypoints for the terrorist attack path
 (Ask the user to place the terrorist and use 4 waypoints to designate the attack path)
 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

 Once the last waypoint is placed, note the stop time.

 STOP TIME
22 Give the subject Q and A sheet #3

160

APPENDIX G. USER CHOICE CONFIGURATION
QUESTIONNAIRE

Q and A sheet 3

 Participant Number:

Please mark your answer the following questions:

 Overall, how easy was it to figure out how to configure the scenario you just completed?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 How easy was it to select a Harbor and a Ship type?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 How easy was it to place the Ship, small boat and terrorist boat?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 Did you use the Wizard to guide this last configuration?

Yes No, didn't
want to use
the wizard.

 No, didn't
know I could

use the
wizard.

161

THIS PAGE INTENTIONALLY LEFT BLANK

162

APPENDIX H. MISCELLANEOUS FUNCTION TASK LISTING

MISC Functions Task Sheet

 Participant Number:

Benchmark
Task
Number

 Once the participant has the misc task list, note the time.

 START TIME

23 Print the scenario just constructed

 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

24 Save the scenario just constructed

 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

26 Run and Record the scenario

 Good clicks/keystrokes

 Keyboard to mouse
moves

 Errors

27 Change 3D viewpoint to Rhib

 Good clicks/keystrokes

Keyboard to mouse
moves

 Errors
28 Change 3D viewpoint to

 Terrorist Boat
 Good clicks/keystrokes
 Keyboard to mouse moves
 Errors

163

29 Change 3D viewpoint to
 DDG Top View
 Good clicks/keystrokes
 Keyboard to mouse moves
 Errors
 START TIME

29 Give the subject Q and A sheet #4

164

APPENDIX I. MISCELLANEOUS FUNCTION TASK
QUESTIONNAIRE

Q and A sheet 4

 Participant Number:

Please mark your answer the following questions:

 How important is it to be able to print a 2D view of an AT/FP Scenario?

 1 2 3 4 5

(vital) (may be
useful, but
could live
without it)

 (I would
never print
out the 2D

view)

 How important is it to be able to save and re-use AT/FP Scenarios?

 1 2 3 4 5

(vital) (may be
useful, but
could live
without it)

 (I would
never save

the scenario)

 How easy was it to run the AT/FP Scenario?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

 How important is it to be able to save and replay 3D simulation runs?

 1 2 3 4 5

165

(vital) (may be
useful, but
could live
without it)

 (I would
never save a
3D simulation
run for future

viewing)

 How easy was it to figure out how to save a 3D simulation run?

 1 2 3 4 5

(obvious) (had to think
and

experiment)

 (too hard,
had to ask

questions or
use help
screens)

166

APPENDIX J. JAVA PROGRAMMING UTILITIES

A. INTRODUCTION

This section provides an overview of pertinent Java programming utilities either

reused or developed in the context of this thesis that may prove useful to one interested in

development details.

B. SCREEN CAPTURING AND BASIC IMAGE MANIPULATION IN
J2SDK1.4.1_X

In the context of this thesis, we faced the problem of how to save the state of

scenario configuration in 2D post-scenario HTML presentation of results to the end-user.

The resulting solution was to investigate current methods utilized to affect a basic screen

capture to a standard image format, such as jpeg. This subsection reviews the process

undertaken to accomplish this task.
003 import java.awt.*;
004 import java.awt.image.BufferedImage;
006 import java.awt.geom.*;
009 import java.awt.geom.Point2D;
010 import java.io.File;
011 import java.lang.reflect.Array;
012 import java.net.URL;
014 import java.util.*;
015 import javax.imageio.ImageIO;
018 import javax.swing.*;
019 import com.sun.image.codec.jpeg.*;

The first item of note is that imaging capabilities introduced in the j2sdk1.4.0 and

further refined in j2sdk1.4.1_0x from Sun Microsystems were utilized. Also, the

com.sun.image.code.jpeg package is utilized for writing out to the jpeg image format.

Although this package has been exposed to developers for usage for several years, there

is a standard disclaimer provided by Sun that they retain the right to change, modify, or

remove any or all com.sun package implementations, so that when changing to a new

version of Java one should check the API documentation for this package to see what has

changed.
028 public class ImageCreator
029 extends Object {

167

The first few items to be examined are the data members of the class that we are

reviewing. First, we maintain an instance of a BufferedImage object. The

BufferedImage subclass of the java.awt.Image object, describes an Image that has an

accessible buffer of image data. It is made of a ColorModel and Raster of image data.

[SUN 2003] Next, we maintain a Graphics2D object for painting the image we want to

create in an off-screen fashion. The Graphics2D class provides an extension of the Java

Graphics class in order to provide finer grained control to the developer over the

geometry, transformation of coordinates, text layout, and color management. It is

considered to be the fundamental class for rendering 2D on the Java platform. [SUN

2003]

031 private BufferedImage _outputImage;
034 private Graphics2D _g2dOutput;

Next, we have a few attribute values that will be necessary for writing out a jpeg

encoded image. First is the image quality that we want the output image to be. This

value ranges from zero to one inclusive, with numbers closer to one being of higher

quality. Then, the x and y dimensions in pixels that we want the output image to be.

And lastly, the String based output filename to utilize for the location and file name of

the output image created.

037 private float _imageQuality;
040 private int _xDimension;
043 private int _yDimension;
046 private String _outputFileName;

Next, we declare storage vectors for the type of components we want to be able to

paint to our image being created in addition to a corresponding location vector that holds

the absolute 2D X-Y position in which to render the desired component. The 2D position

is treated as the upper left corner of the component’s location, with the top left corner of

the produced image being considered to be the coordinates (0,0). In this implementation,

we treat the components storage vectors as acting in a first-in-first-out manner, but any

sensible variation of implementation should suffice. Additionally, in this

implementation, we allow for the idea that the user might want to paint individual points

168

on the output image for items such as track reconstruction in 2D in a simulation, so an

additional storage vector for points and corresponding colors to paint is incorporated.
049 private Vector _componentVector;
051 private Vector _componentLocation;
054 private Vector _pointVector;
057 private Vector _pointColorVector;

Next, we have the default no argument constructor for the class which has one

job; to provide legal default initialization values for the components of the class in the

case of one or more not being set by the developer utilizing the class and initializing the

storage vectors.
063 public ImageCreator() {
064 this.setImageQuality(.8f);
065 this.setOutputImageSize(700, 460);
066 this.setOutputFileName("test.jpg");
067 init();
069 }

256 private void init() {
257 _componentVector = new Vector();
258 _componentLocation = new Vector();
259 _pointVector = new Vector();
260 _pointColorVector = new Vector();
261 _outputImage = new BufferedImage(_xDimension,
 _yDimension, BufferedImage.TYPE_INT_RGB);
262 _g2dOutput = _outputImage.createGraphics();
263 }

We then include basic access methods for setting the private data members

defined earlier such as the image quality, image size, output filename, and so on. Of

note, for this implementation we take basic care to ensure one can’t set an image property

to a an illegal state such as a negative size, quality setting outside of the legally defined

range, etc. Additionally, we define the methods for adding components and points to

paint, as well as methods for clearing previously added components in the event of reuse

of a single object created for outputting images.

079 public void setImageQuality(float pQuality) {
080 if (pQuality < 0.0f) {
082 _imageQuality = 0f;}
084 else if (pQuality > 1.0f) {
086 _imageQuality = 1.0f; }
088 else{
090 _imageQuality = pQuality;} }
093
101 public void setOutputFileName(String pOutputFileName) {

169

102 _outputFileName = pOutputFileName;}
105
119 public void setOutputImageSize(int pXdimension, int
 pYdimension) {
120 if (pXdimension < 0){
122 _xDimension = 0;}
124 else{
126 _xDimension = pXdimension; }
128 if (pYdimension < 0) {
130 _yDimension = 0; }
132 else {
134 _yDimension = pYdimension; } }
137
138
148 public void addComponentToPaint(URL pURL) {
149 _componentVector.add(pURL);}
152
159 public void setComponentLocation(AffineTransform pTransform
) {
160 _componentLocation.add(pTransform);}
163
164
176 public void addPointToPaint(Point2D pPoint, Color pColor)
 {
177 _pointVector.add(pPoint);
178 _pointColorVector.add(pColor);}
181
187 public void clearComponentsToPaint() {
188 Vector emptyVector = new Vector();
189 _componentVector = emptyVector;
190 Vector emptyVector2 = new Vector();
191 _componentLocation = emptyVector2;
192 }
193
199 public void clearPointsToPaint() {
200 Vector emptyVector1 = new Vector();
201 Vector emptyVector2 = new Vector();
202 _pointVector = emptyVector1;
203 _pointColorVector = emptyVector2;
204
205 }
206
207

243 public void resetAllComponets() {
244 this.setImageQuality(.8f);
245 this.setOutputImageSize(800, 600);
246 this.setOutputFileName("test.jpg");
247 this.init();
248 }

Next, we define our writeImage method, which is responsible for writing the

information currently contained or passed to our class out as a JPEG encoded image.
216 public void writeImage() {

170

217
218 try
219 {

First, the method invokes the utility method createImage which paints the

components and points contained in the storage vectors previously defined in the class.

220 this.createImage();

The createImage utility method first paints the componentVector in a first-in-first-

out manner to the Graphics 2D Object that is being used to paint to our BufferedImage

for making the JPEG file, then paints any points that have been passed following the

components so that they are visible on the output image. Order matters when painting to

the Graphics2D Object. The items can be thought of as being layered on top of one

another in the order painted.
270 private void createImage() {

272 for (int idx = 0; idx < _componentVector.size(); ++idx
){
274 try
275 {
276 URL tempURL = (URL) _componentVector.get(idx);
277 BufferedImage myImage = ImageIO.read(tempURL);
278 AffineTransform tempTransform = (
 AffineTransform) _componentLocation.get(idx);
279 _g2dOutput.drawImage(myImage, tempTransform, null);}
285 }
288 for (int idy = 0; idy < _pointVector.size(); ++idy)
289 {
 Point2D.Double tempPoint = (Point2D.Double)
 _pointVector.get(idy);
291 _g2dOutput.setColor((Color)
 _pointColorVector.get(idy));
292 _g2dOutput.draw(new Rectangle((int)
 tempPoint.getX(), (int)
 tempPoint.getY(), 1, 1)); } }

Then, we open a FileOutputStream object with the desired or default output file

name for creating the JPEG followed by creating a JPEGImageEncoder instance with this

FileOutputStream instance.
222 FileOutputStream out = new FileOutputStream(
 _outputFileName);
223 JPEGImageEncoder encoder =
 JPEGCodec.createJPEGEncoder(out);

171

Next, we use our BufferedImage that has been painted to by all of our desired

components to create a JPEGEncodeParam object, and follow this by setting the image

quality, and ultimately encoding the image, followed by closing the outputstream we

have previously opened.
224 JPEGEncodeParam param =
 encoder.getDefaultJPEGEncodeParam(_outputImage);
225 param.setQuality(_imageQuality, false);
226 encoder.setJPEGEncodeParam(param);
227 encoder.encode(_outputImage);
228 out.close(); }
231 catch (Exception e){}
236 }
237

Finally, we show an exemplar implementation that draws an overhead image of

Port Hueneme followed by a simple 2D image of a destroyer and then several blue points

drawn down the left side of the image (Figure 96).

306 public static void main(String args[]) {
307 ImageCreator myCreator = new ImageCreator();
308 myCreator.setOutputFileName("c:/test01.jpg");
309 URL chartURL = null;
310 URL shipURL = null;
311 try
312 {
313 chartURL = new URL(
 "file:/c:/atfp/images/PortHuenemeChart.gif");
314 shipURL = new URL(
 "jar:file:/c:/atfp/images/images.jar!/ddgIcon.GIF");
315 }
316 catch (Exception e){}
320
321 myCreator.addComponentToPaint(chartURL);
322 myCreator.setComponentLocation(new AffineTransform());
323 myCreator.addComponentToPaint(shipURL);
 AffineTransform tempTransform = new AffineTransform();
 tempTransform.setToTranslation(300,300);
324 myCreator.setComponentLocation(tempTransform);
325 myCreator.addPointToPaint(new Point2D.Double(100, 100
), Color.blue);
326 myCreator.addPointToPaint(new Point2D.Double(100, 101
), Color.blue);
327 myCreator.addPointToPaint(new Point2D.Double(100, 102
), Color.blue);
328 myCreator.addPointToPaint(new Point2D.Double(100, 103
), Color.blue);
329 myCreator.addPointToPaint(new Point2D.Double(100, 104
), Color.blue);
330 myCreator.addPointToPaint(new Point2D.Double(100, 105
), Color.blue);

172

331 myCreator.addPointToPaint(new Point2D.Double(100, 106
), Color.blue);
332 myCreator.addPointToPaint(new Point2D.Double(100, 107
), Color.blue);
333 myCreator.addPointToPaint(new Point2D.Double(100, 108
), Color.blue);
334 myCreator.addPointToPaint(new Point2D.Double(100, 109
), Color.blue);
335 myCreator.writeImage();
336 }

Figure 96. Depicts example output of the ImageCreator JPEG writer class.

So, the next extension not discussed in this appendix, is to add functionality for

painting Java Components to the mix. Modifications to do so include painting the Java

components first in the writeImage method. With the modifications made, results such as

those depicted in Figure 97 can be achieved.

173

Figure 97. Depicts the resulting jpeg encoded output file obtained after adding Java

Swing Components.

C. PRINTING IN JAVA

Once one has done Image manipulation in Java, printing mainly involves shifting

one’s paradigm of painting objects to a file, to that of painting them to a Graphics object

to send to the operating systems print stream. The primary interface of concern is the

java.awt.print interface. This interface defines the print method, which takes as

arguments a Graphics object instance, PageFormat object instance, and an int

representing the pageIndex to be utilized and throws a PrinterException if the Print object

aborts the printing job for any reason. [SUN 2003] The PageFormat class is used to

describe the orientation and size of the page to be printed. [SUN 2003]

The next class we are concerned with when trying to print from our Java

application is the PrintJob class. This class is invoked for setting up a print job, as well

174

as to invoke a printing dialog with the end user, then to print the pages of the job.

Depicted in Figure 98, the Print and Print Setup buttons are exposed to the end user for

selection on applicable screens while configuring an AT/FP scenario. In this case when

viewing platform specific information on the DDG-51 Arleigh Burke class destroyer.

Figure 98. Depicts the Print and Print Setup buttons in the AT/FP Scenario Generator

application in the upper right portion of the Ship Information panel.

Next, the page setup dialog (Figure 99) and the print setup dialog (Figure 100) are

depicted.

175

Figure 99. Depicts the Page Setup dialog.

Figure 100. Depicts the Print Setup dialog.

 One problem encountered upon initial usage of the print interface was that the

Graphics object did not allow for the concept of scaling. Upon further research, tutorials

were found at http://www.javapro.com (accessed January 2003) and

http://www.javadevelopers.com (accessed January 2003) that reviewed a basic process

for leveraging the JEditorPane and Graphics2D classes for scaling the desired document

for printing to a standard 8.5 inch by 11 inch format. This process basically consists of

first casting the Graphics object instance in the print method to a Graphics2D object.

Then using a JEditorPane, set it to the width of the printable page, and if it cannot due to

the page being too large, scale the page to fit. This is done by clipping the bounds of the

Graphics2D object to the size of the printable page we are looking at. For additional

implementation details, the reader is referred to the online tutorials or to the source code

for this thesis.

D. SUMMARY

In summary, the reader has been exposed to basic imaging operations in context

of creating basic screen captures and saving as JPEG encoded files as well as a basic

introduction to printing in the Java API.

176

APPENDIX K. APPLYING XSLT TECHNOLOGIES IN THE JAVA
PROGRAMMING LANGUAGE

A. INTRODUCTION

This appendix reviews the basic syntactical and other requirements necessary in

order to apply XML stylesheets to XML documents to produce HTML, text, and other

XML instance files.

B. UTILIZING XSLT IN CLIENT-SIDE JAVA

When conducting a general literature review of the usage of XML and XSLT with

the Java programming language, one can find a lot of material on its usage for Server-

side programming. When conducting client-side programming it can generally be

confusing for aspiring developers on how to utilize the many available XML libraries to

effect basic transformations within the context of their Java applications. For this reason,

inclusion of an example of the basic usage of XSLT with the java.xml.parser,

java.xml.transform, org.w3d.dom, and org.xml.sax java libraries is reviewed.

Additionally, the reader is referred to [Kay 2001], [MANGANO 2001], and [BURKE

2003] for further information.

C. JAVA AND XSLT EXAMPLE

The below example is a subset of the HTMLMaker Java class included in the

source distribution of this thesis based on work provided by the draft work in

[NEUSHAL 2003] geared towards GIS solutions.

First, we list the library imports necessary for this example. Of note, there are

several different ways to effect transformation with XSLT in Java, and it is recommended

to the reader to review current best practices available at http://www.sun.com/developers

(accessed February 2003), http://www.jdom.org (accessed February 2003), as well as

investigation into any emerging XML libraries or technologies not discussed in this

thesis.

004 import javax.xml.parsers.DocumentBuilder;

177

005 import javax.xml.parsers.DocumentBuilderFactory;
006 import javax.xml.parsers.FactoryConfigurationError;
007 import javax.xml.parsers.ParserConfigurationException;
009 import org.xml.sax.SAXException;
010 import org.xml.sax.SAXParseException;
011 import org.w3c.dom.Document;
012 import org.w3c.dom.DOMException;
013
014 // For write operation
015 import javax.xml.transform.Transformer;
016 import javax.xml.transform.TransformerException;
017 import javax.xml.transform.TransformerFactory;
018 import javax.xml.transform.TransformerConfigurationException;
019 import javax.xml.transform.dom.DOMSource;
020 import javax.xml.transform.stream.StreamSource;
021
022 import javax.xml.transform.stream.StreamResult;
023
024 import java.io.*;
025

First, we need to look at the over-all purpose of this class. We wrote this class to

do one thing, given a string based URL for an XSLT, input filename, and output

filename, effect an XSLT transform on the input file. So, we see that we declare our

class to have one data member, a static instance of a DOM Document object. This is

used to store the input data file once we parse it to XML.
036 public class HTMLMaker {
037
038 static Document document;

050 public HTMLMaker(String xsl, String filename, String
 newfilename) {

In this example, we are doing all of the work in the constructor of the class. If

reusing for production purposes, typically get and set methods are exposed so that one

doesn’t have to create new object instances continually. In the context of our use in this

thesis, the class has only one instance generated per scenario run and did not prove to be

of consequence that we created multiple ones. So, the first thing we do in the constructor

is to create an instance of a Document BuilderFactory from the java.xml.parsers library.

The DocumentBuilderFactory provided from the Sun libraries provides a factory API that

lets one obtain a parser to produce DOM trees from XML documents. [SUN 2003] This

class is not guaranteed to be thread safe, so when deploying in a multi-threaded

environment, we would need to ensure this on our own. In this context though, we are

178

not accessing the XML input file in another thread so there is no need to worry about this

case. After creating a new factory object instance, we want to make sure that it is

namespace aware in the case of using multiple namespaces within an XML instance

document (say our native schema combined with the X3D schema and Generic Hub).

051 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
052 factory.setNamespaceAware(true);

Next, we create file objects for our XSLT, input XML file, and the desired output

file from the java.io library.

055 try
056 {
057 File stylesheet = new File(xsl);
058 File datafile = new File(filename);
059 File newfile = new File(newfilename);

Our next step is to create a DocumentBuilder object in which to parse our input

XML file into the static document instance mentioned previously. Once we obtain an

instance of this class, we can parse our input from other sources besides the File instance

shown here. We could also use InputStreams, URL’s, or SAX InputSources if desired.

[SUN 2003]

061 DocumentBuilder builder =
 factory.newDocumentBuilder();
062 document = builder.parse(datafile);

The next step is to create and get a handle to an instance of a TransformerFactory

object instance in order to apply our XSLT to the XML file we now have in memory as a

DOM object instance. The TransformerFactor is part of the java.xml.transform package

and is used to generate Transformer and Template class object instances. [SUN 2003]

064 // Use a Transformer for output
065 TransformerFactory tFactory =
 TransformerFactory.newInstance();

179

Next, we create a new StreamSource instance from the XSLT File object that we

have. The StreamSource object does one thing for us; it acts as a placeholder for our

transformation source, but in the form of a stream of XML. [SUN 2003]
066 StreamSource stylesource = new StreamSource(
 stylesheet);

Then, we use the StreamSource information in which to seed our Transformer

instance object created from the previous factory implementation.
067 Transformer transformer = tFactory.newTransformer(
 stylesource);

Then, we use the Document instance that we created earlier to create a new

DOMSource instance object. The DOMSource class simply acts as a holder for the

transformation source tree in the form of a DOM tree that we will use again shortly.

[SUN 2003] The final item that we create is a StreamResult instance from the output File

instance that we’ve created from the desired parameters passed to the constructor of the

class. An object which implements this interface simply is designed to contain the

information which is required by our underlying XML libraries to create a resulting

transformation tree from the application of an XSLT.

069 DOMSource source = new DOMSource(document);
070 StreamResult result = new StreamResult(newfile);

Finally, we pass the source and result instance objects to our transformer instance

object in which to process the source tree to the result tree for us.

071 transformer.transform(source, result);
072
073 }

Now, we list the various catch statements that although not required, can be

considered good practice to include when we might encounter problems with trying to

apply XSLT to instance documents.
074 catch (TransformerConfigurationException tce)
075 {}
089 catch (TransformerException te)
090 {}
104 catch (SAXException sxe)

180

105 {}
116 catch (ParserConfigurationException pce)
117 {}
122 catch (IOException ioe)
123 {}

The final portion of the example shown is a simple test case of applying an XSLT

to an instance document with a desired filename on a Windows Operating System.

Improvements to this class can be made in the exposure of all of the available input

sources as separate class arguments for the XSLT, input XML file, and output file in

addition to examining requirements for usage in a thread safe manner.
136 public static void main(String args[]) {
138 HTMLMaker myMaker = new HTMLMaker(
 "c:/atfp/xml/xsl/ScenarioToHTML.xsl",
 "c:/atfp/xml/output/ATFPNewResult.xml",
 "c:/atfp/xml/htmloutput/atfp01.html");
139 }

E. SUMMARY

In summary, the reader has been exposed to the basic utilization of the core Java

XML library APIs in order to apply an XSLT to an XML instance document within a

client-side Java application. Acknowledgements go to Captain James Neushul, USMC,

who provided initial instruction and source to the author for this area of development.

181

THIS PAGE INTENTIONALLY LEFT BLANK

182

APPENDIX L. JAVA APPLICATION INSTALLER CREATION
WITH ZEROG.COM INSTALL ANYWHERE

A. INTRODUCTION

This appendix provides an overview of how to create installation programs for

Java applications with the commercial application, Install Anywhere by ZeroG.com of

San Francisco, California. The focus of the appendix will be on the advanced designer

option provided by the application with exploration of the basic designer left to the

reader.

B. MOTIVATION FOR USE

As outlined previously in this thesis, there was substantial motivation to

investigate current industry best practices for the deployment of Java technologies for use

on the client without being able to guarantee nor deploy a current Java Virtual Machine

to end-user’s web browsers. The Install Anywhere Enterprise Edition Java deployment

solution from ZeroG was found to be in use by industry (http://www.borland.com)

(accessed March 2003), and based on open architectures and utilizing open standards

[ZEROG 2002], whilst deploying a commercial product.

C. CREATING THE INSTALLATION APPLICATION

The first step when creating a new application installer is to either select a new

project or an existing one (Figure 101). The Install Anywhere project files are simply

XML documents that contain the various properties used for configuration of a previous

or the currently being configured installer. Once this has been done, the next item to

configure is the general project information.

183

Figure 101. Depicts the startup screen for the Install Anywhere Enterprise Edition

application.

General project information is comprised of the project title, location to store the

XML-based project configuration file, as well as the project title to utilize on the

deployment applet that will be generated when the installation creation is complete

(Figure 102).

184

Figure 102. Depicts the Installer Information Configuration panel for Install Anywhere.

The next step is to configure the project description panel (Figure 103). Items

included in this panel are things such as the project description, home web page,

versioning and time stamp information, project information web site, as well as the point

of contact for the application with email address if desired.

185

Figure 103. Depicts the Project Description Configuration panel for Install Anywhere.

Next, configuration information is selected for the various platforms that are

being deployed to for the current installer creation (Figure 104).

186

Figure 104. Depicts the Platform Configuration panel for Install Anywhere.

The next few options in the advanced installer are concerned with the

configuration of the look and feel of the display panels that will be presented to the end-

user when running the installation program. Figures 105 and 106 depict the configuration

of the startup splash screen image and installation panel billboards for the X3D-Edit

installation program configuration. It was found that for both the X3D-Edit and AT/FP

Scenario Generator application installers it was necessary to go through a series of trial

and error steps in order to find the best image size and quality to utilize for final installer

creation. There was a capability to preview the images selected when creating the

installation programs, but this did not always provide an accurate feeling for what the

actual result would be when generating the final installation application.

187

Figure 105. Depicts the Look and Feel Configuration panel in Install Anywhere.

188

Figure 106. Depicts the Billboards configuration for Install Anywhere.

The next item to complete while generating the installation application was to

select the support locales with respect to language support in the deployed application

(Figure 107). The X3D-Edit scene graph editing application supports multi-lingual tool-

tips in the French, German, and Spanish languages with ongoing work in the Iranian and

Portuguese languages. As a result, as the tool-tip work is completed for a language, the

applicable locale is added to the installation application configuration in order to better

support end-users that do not speak English natively. For the three languages with tool-

tip sets completed, we found the installer translation for steps to take to be adequate.

When adding additional panels though, we found that one must incorporate multi-lingual

capabilities in the HTML pages generated for inclusion since the application will only

conduct this translation for the languages chosen on the default panel instructions.

189

Figure 107. Depicts the Locale Configuration panel for Install Anywhere.

The next item to configure is the general configuration panel for the application

installer being developed (Figure 108). The first item to note is that by selecting to send

the standard output to the console, we can keep the look and feel of a Java application

being run which is often desired for various Java applications that are being developed in

conjunction with emerging technologies. When looking to deploy to a larger client base

in a production-type style application, this may not be generally desired since we do not

want to confuse the end-user more than is necessary. Additionally, the minimum and

maximum Java heap sizes may be configured here if one does not desire to utilize the

64MB default provided by a standard Java Virtual Machine (at the time of this writing).

The last option on this panel to mention is the allowable VM listing. Even though we

may configure this here, it is generally easier to select/configure this on a later panel.

190

Figure 108. Depicts the General Application Configuration panel for InstallAnywhere.

The next step we are concerned with is the configuration of the Pre-Installation

Action list (Figure 109). For the pre-installation actions and panels that the user will see,

we can add additional panels, change the wording of existing ones, and so forth.

191

Figure 109. Depicts the Pre-Installation Action configuration panel in InstallAnywhere.

The next step is probably the most important. It is the installation configuration

panel (Figure 110). In this panel, we select the location of deployment for the application

and support files. Also, we configure the shortcuts and application launchers that will be

exposed for the end-user to run after application delivery. Additionally, we can add any

registry entries for Windows operating system deployments that might be necessary for

the targeted client machines (in this case a simple registry entry that associates the X3D

icon with all X3D files on the client machine).

192

Figure 110. Depicts the Installation Configuration panel for InstallAnywhere.

Figure 111 depicts how we configure Java main class arguments for our deployed

application to be utilized in an Operating System independent manner for X3D-Edit. We

make use of the exposure of system variables to us through the Install Anywhere

environment in order to reference the System Drive Root, vice the use of a lettered drive

which would then make it necessary for us to repeat installation creation work for each

operating system desired for deployment.

193

Figure 111. Depicts the configuration of Java Main Class arguments and default Mac OS

X security permissions for the X3D-Edit InstallAnywhere project.

The next step on the installation configuration panel is to select the classpath

settings to be used for our application deployment. These may be done in any

combination of automatic or manual configuration and are explicitly annotated in the

installation panel as to what is considered to be in the classpath of the deployment

application (Figure 112).

194

Figure 112. Depicts configuration of classpath for the X3D-Edit installation application

in InstallAnywhere.

The next item we configure are the post-installation actions for the installation

application to follow. Depicted in Figure 113, one can add additional web pages to be

displayed to the end-user after the application has been installed but prior to completion

of the installation steps. In this case, the X3D help.html is displayed to allow the user to

select additional tools or resources to download prior to completing the final installation

step.

195

Figure 113. Depicts the Post-Installation configuration screen for InstallAnywhere.

The final step before proceeding to create and test a build for our application is to

select the operating system and Java Virtual Machine (jvm) version(s) for each that will

be deployed as options (Figure 114). To add additional versions, one can download what

is referred to as a Virtual Machine (VM) Pack [ZEROG 2002] from

http://www.zerog.com (accessed January 2003). Once downloaded and placed in the

applicable directory and restarting the Install Anywhere application one may then use the

new VM that has been downloaded. In order to add an extended virtual machine or a

version that ZeroG has not included in their web-resources yet, one may simply create a

zip archive of the desired Java Runtime directory, then include with a specified jvm

manifest file, and then create a new archive with a .vm vice .zip extension. The new VM

pack can be considered available for use after placing it in the applicable

InstallAnywhere resource directory. This capability was utilized for the creation of a VM

pack that included Java3D and Open GL for Java for the AT/FP Scenario Generation

196

Application Installer (Figure 115) with the specific process for creating and downloading

new VM packs outlined in [ZEROG 2002]

Figure 114. Depicts the Build Configuration panel in InstallAnywhere.

197

Figure 115. Depicts the selection of a VM from currently available ones on the

development computer.

The final step is to build, run, and test the newly created installation applet. One

can choose to create a web-enabled deployment applet, a compact disk (CD) deployment

application, or both (Figure 116). The generated applet installation web-page was found

to work satisfactorily in all available web browsers from Netscape versions 4.7x through

7.x, Internet Explorer versions 5.x-6.x, Mozilla, and the MSN 8 Explorer. Operating

systems tested were Linux Red Hat 7.3, 8.1, Free BSD Unix, Solaris /Intel, Max OS X,

Windows 95, 98, Me, 2000, and XP with success obtained for all after the

aforementioned Windows inconsistencies were removed.

198

Figure 116. Depicts the X3D-Edit Installation Applet displayed in Netscape 7.01 running

on a Windows XP Operating System.

D. INSTALL ANYWHERE AVAILABILITY

The commercially available Enterprise Edition of the Install Anywhere

deployment solution was utilized for this appendix. The 1-seat NPS educational liscense

cost approximately $2500 to include support and upgrades. Also available for no charge

from ZeroG is the InstallAnywhereNow! Version of the application. This option is freely

available with legal deployment applications allowed to be developed for a period of 30

days without risk of legal consequences. The Now! Version generally does not have as

many features nor support options as the Enterprise Edition, but has and does serve as an

alternative ‘light’ deployment option for those that might not have the monetary

resources to acquire a commercial deployment option. [DICKIE 2002]

199

E. SUMMARY

In summary, the reader has been presented with an overview of the necessary

steps to utilize the Install Anywhere Java Application Installer creation tool in context of

creation of the open source X3D-Edit scene graph modeling tool maintained by the

Web3D Consortium at http://www.web3d.org (accessed February 2003). Additional

information on X3D may be obtained from Dr. Don Brutzman (brutzman@nps.navy.mil),

http://web.nps.navy.mil/~brutzman/ (accessed 17 March 2003), and additional

information on Install Anywhere from the ZeroG website at http://www.zerog.com

(accessed February 2003).

200

APPENDIX M. LEVERAGING JAVA 2D FOR BASIC COLLISION
DETECTION

A. INTRODUCTION

This appendix reviews how to utilize a subset of the Java2D API in order to

implement basic collision detection and response using a harbor-based virtual

environment as the driving application.

B. REPRESENTING GEOMETRY OFFSCREEN

The java.awt and java.awt.geom packages provide a standard set of 2D geometry

classes that can be used to implement a decent level of fidelity for entity to entity and

entity to terrain collision detection within a networked virtual environment. Although the

Java3D API provides greater functionality and inherent knowledge of the third

dimension, as developers we can not assume as widespread deployment of the 3D API,

but can for the basic Java packages. As a result, the basic geometry classes provided in

java.awt and java.awt.geom were investigated and leveraged to a satisfactory level of

detail in order to effect basic collision detection and response for the small boat harbor

environment utilized in this thesis. The reader is also referred to [Lamonde 2001] for

additional information on the usage of the basic Java API in context of overall game or

simulation design.

The first problem faced with implementation of collision detection in a water-

borne environment without benefit of a game engine to optimize this task for us is to be

able to adequately represent the water boundary with terrain or man-made structures such

as piers. The decision was made to use the java.awt.Polygon class for this representation.

The Polygon class is defined to be an encapsulation of a closed 2D region in our given

coordinate space. [SUN 2003] We can have an arbitrary number of line segments, each

being considered a side of our polygon. The internal representation of the polygon is

made of a listing of (x,y) coordinates defining vertices of the polygon. Each successive

pair of points define endpoints of a line segment that is a side of the polygon. The first

and final points are automatically joined. [SUN 2003] We have available to us a

constructor with the following signature with which to create a Polygon class instance:

201

Polygon(int [] xpoints, int [] ypoints, int npoints). The method takes an array of ints for

the x-coordinates of the vertices, a corresponding array of y-coordinates for the vertices,

and a third int value representing the total number of vertex points for the Polygon

instance. One drawback to the Polygon class is that we do not have floating point or

double values exposed to us for defining vertex point locations. This means that we have

an error of up to 1 meter in length in the off-screen geometry definition which results in

having to force a tighter error tolerance and resulting requirement of a smaller scenario

timestep when less than one meter of accuracy is important in detecting collision with the

land. We saw though, that in general for ships, they would run aground in the real world

before this point in most cases so this constraint did not play an important factor in this

work. But, looking at the signature of the class, the next problem was in how to develop

the XZ plane vertex listing to represent the harbor environments. Two solutions were

developed with future work identified for automating the process in some fashion. First,

if a port is hand crafted from available information such as nautical charts, imagery, and

design plans, then we have inherent knowledge of the off-screen coordinates and can plug

in easily. For more complicated, or tool-generated environments, we found that we could

accurately if tediously generate the coordinate listing by using Multigen Creator in vertex

selection mode and select each vertex of interest to get the XZ plane coordinates for

creating the off-screen Polygon object (Figure 117).

202

Figure 117. Depicts Multigen Creator in Vertex selection mode being used for creating

the off-screen representation of the Pearl Harbor scene.

Once an off-screen polygon was created, we then have several methods that can

be invoked by entities to determine if they have or are going to collide with the land

(Table 3).

203

boolean contains(double x, double y)
 Determines if the specified coordinates are inside this Polygon.

 boolean contains(double x, double y, double w, double h)
 Tests if the interior of this Polygon entirely contains the
specified set of rectangular coordinates.

 boolean contains(int x, int y)
 Determines whether the specified coordinates are inside this
 Polygon.

 boolean contains(Point p)
 Determines whether the specified Point is inside this Polygon.

 boolean contains(Point2D p)
 Tests if a specified Point2D is inside the boundary of this
Polygon.

 boolean contains(Rectangle2D r)
 Tests if the interior of this Polygon entirely contains the
specified Rectangle2D

Table 3. Depicts a subset of the available methods for the Polygon class. From [SUN
2003]

 Therefore, we can either represent a water-borne entity off screen with a

java.awt.Recangle2D class object or its centroid with a java.awt.geom.Point2D object

and make calls on the off screen Polygon object to see if we are still in the water (true) or

not (false). Additionally, there is an intersect method that can be invoked with similar

parameters available for usage. We found that this proved to be satisfactory for timesteps

from 33 ms to 1 second in scenarios of up to twelve entities. Also, since all Java 2D

geometry definitions of concern implement a common java.awt.Shape interface, the same

methods for checking containment, distance, and intersection are exposed with all shape

types, so the same methodology can be used to define simple bounding boxes to more

complex off-screen representations of entities for implementation of entity to entity

collision detection and response.

 The next problem encountered was implementation of a more realistic collision

response as a result of the collision with the land. For this, one has to be able to get a

handle to the line segment that is being intersected. To this end, we can invoke the

getPathIterator method illustrated in Table 4 in order to get an iterator to trace the

boundary of the geometry to do an intersection test with our entity geometry.

204

PathIterator getPathIterator(AffineTransform at)
 Returns an iterator object that iterates along the boundary
of this Polygon and provides access to the geometry of the
outline of this Polygon.

Table 4. Depicts the getPathIterator method for the Polygon class from [SUN 2003].

Once we have the applicable segment that we are colliding with, we can then

calculate the surface normal to this segment and carry out any rigid body physics

responses that we desire.

C. SUMMARY

In summary, the reader has been exposed to usage of the java.awt.Polygon class

and java.awt.geom package for use in implementation of basic client-side java

implementation of collision detection.

205

THIS PAGE INTENTIONALLY LEFT BLANK

206

APPENDIX N. LEVERAGING XSLT FOR X3D GRAPHICS
DEPLOYMENT FOR HANDHELD DEVICES

A. INTRODUCTION

This appendix takes a short look at the portability of X3D graphics scenes

combined with the use of XSLT for deployment to currently available Windows CE

driven hand-held devices and notes both lessons learned as well as identifying areas for

further research.

B. REAL-TIME 3D ON HAND HELD DEVICES

At SIGGRAPH 2000 in New Orleans, Louisiana, Parallel Graphics demonstrated

the first web-based 3D rendering client for the Pocket PC/Windows CE operating

systems with a public release following within a year called Pocket Cortona.

[PARALLELGRAPHICS 2003] High end hand-held devices that could support

reasonable performance for 3D graphics ranged in price from $600 to over $1000 until

late 2002 when Dell began to sell the Dell Axim X-4 and X-5 handheld devices for prices

approximately ranging from $150 to $300 before the addition of peripherals. Even more

enabling than the reduction in price, however, was the increase in capability. The Dell

Axim X-5, which was used for this study, was being sold in early 2003 with capabilities

given in Table 5.

207

Processor Intel XScale processor at 400MHx

Memory (RAM) 64 MB SDRAM

(ROM) 48 MB Intel StrataFlash ROM

Operating System Microsoft Pocket PC 2002 Premium

Display Type TFT Color 16-bit, touch sensitive, transflective display

Display Size 3.5 inches

Display Resolution 240 x 320 Pixels at 65,536 colors

Compact Flash One Type II CompactFlash card slot

SecureDigital One secure Digital card slot

Infrared port Standard v1.3 (115 kbps)

Audio Stereo headphone connector

Physical Dimensions Length: 128 mm (5.04 inches)

Width: 81.55 mm (3.21 inches)

Height: 18 mm (.71 inches)

Weight: 196 g (0.43 lb)

Audio Controller AC-9 Codec chip; WM 9704 sound chip

Stereo Conversion 16-bit stereo; 8.0, 11.025, 22.05, and 44.1 KHz sample rates

Record Full duplex record and playback

Microphone/speaker Integrated

Headphone Stereo connector.

Table 5. Depicts a subset of the hardware configuration of the Dell Axim X-5
from [DELL 2002]

Combined with the usage of an 802.11b wireless communications card, it was

decided to investigate more fully the capabilities and limitations of the Axim X-5 with

the Pocket Cortona VRML 97 client.

The first task to conduct was to determine any limiting factors on the VRML 97

specification implementation that Parallel Graphics took in the Pocket Cortona

implementation. From, http://www.ParallelGraphics.com/products/cortonace/notes

(accessed February 2003), the following items were not implemented in Pocket Cortona

and no plans or dates were provided for possible future implementation: Java support in

208

the VRML Script node, External Authoring Interface (EAI) support in web pages, Movie

Texture node implementation, alpha channel support in png image files, and no

guaranteed support for ParallelGraphics extension nodes such as the Advanced

Appearance node which contains BumpMapping and Multi-texturing capability, NURBS,

etc. Although this was advertised, some support for the Collision Detection and Key-

Sensor extension implementations was found. The only hardware limitations referenced

were a minimum of 8 MB of RAM with 32 MB the recommended amount. General

references were made to the support of Active-X controls within web-pages in Pocket

Explorer, but no further information on how this might be leveraged for immediate usage

was easily found.

Next, since we did not have the benefit of using Java in the Script node nor the

EAI for implementing a direct port of this thesis work, we decided to implement an

XSLT that transformed the native AT/FP XML scenario instance files to a static X3D

scene representing the harbor and entity starting positions, which was then stylesheeted to

VRML97 utilizing the X3DToVRML97.xslt provided by the Web3D Consortium as part

of the X3D-Edit installation. Following this, we tried a simple rendering of the Pearl

Harbor scene (Figure 118) with no ships present in the Pocket Cortona client.

209

Figure 118. Depicts the PearlHarbor.wrl scene rendered in the Parallel Graphics Cortona

VRML97 plugin for the PC.

The only problem experienced for this scene, was that the main texture size of 1.3

MB was too large for the client to display in a reasonable time frame for the scene. The

Polygon count was approximately 7000 polygons with 300 kb of other textures utilized

for the buildings and the water. So, the next step was to scale down the primary texture

size by sixty percent. When this was done, the scene was able to be rendered at display

rates averaging approximately 20 frames per second (fps) with this rate dipping as one

navigated the scene via the stylus in examine mode. When pausing or selecting a

predefined viewpoint, the display rate would generally start at around 20 fps in most

cases. Of note, the Pocket Cortona implementation also supports interactivity to be

programmatically added through the usage of EcmaScript in the VRML Script node, and

the use of Routes amongst nodes which was used to explicitly bind the navigation info

stack based upon the active viewpoint in the scene. (Figure 119)

210

Figure 119. Depicts the Arizona Memorial view in Pocket Cortona version 1.5 on the

Dell Axim-5.

Next we investigated the capabilities for rendering the statically created scenarios

with ships and geometry referred to above. The result was satisfactory, with the primary

annoyance being a longer-than-expected time for file parsing and loading (Figure 120

below).

211

Figure 120. Depicts the PearlHarbor.wrl scene from Figure 118 displayed in Pocket

Cortona on the Dell Axim Handheld device.

It was determined that although we could not provide real time simulation for

viewing to the user without a means to open network sockets or otherwise communicate

with our scenes to change position information on the fly, we could enable the end user to

examine a harbor or port of interest in real-time 3D on the hand held devices which they

could not have been able to do a few years ago. Combined with the Wireless networking

capability, we could further leverage this capability by providing various hyperlinks to

centralized data stores about the ports such as Port Security bulletins, tidal information,

and so on.

C. LEVERAGING XSLT

Besides simply utilizing XSLT to style X3D geometry nodes from our scenario

application files, we sought to identify any textures and or geometries that needed

alternative ‘light’ versions to be created and referenced for hand held usage. The Pearl

Harbor texture and large scale Aden, Yemen scenes were the primary two items that had

to have alternative versions created in order to be useful on the hand held. [SUNWEB

2003] provides documentation on usage of the Apache Web Server to detect the

212

Operating System of the client-program navigating to our web site in order to deliver

specifically styled content. As a result, if we were deploying this thesis in an Enterprise

type of fashion which would have centrally dedicated servers, we could leverage the

XSLT we’ve produced in this manner and further hide the fact that we are doing any

extra work in order to deliver content for the Pocket PC.

D. OTHER MILITARY USES

Besides the usage leveraged for this thesis work, other potential military uses that

Web3D technologies combined with the current hand held technologies are:

1 – Data Visualization – Modification and collaboration on CAD 3D drawings

and design changes. [PARALLELGRAPHICS 2003]

2 – Field Maintenance – Providing in-the-field instruction and resources for

conducting equipment maintenance and repair. [PARALLELGRAPHICS 2003]

3—Location Based Navigation [PARALLELGRAPHICS 2003]

4—Tactical Warfare Planning – Providing a 3D visualization of the battlespace

while planning operational employment of forces with the integration of other planning

tools.

E. FUTURE RESEARCH

The hardware appears to have reached a useful enough state that further research

into alternative navigation and viewing paradigms focused on optimizing the end user’s

experience should be conducted soon. Combined with any results garnered from this

area, this technology is ready to use now.

Conducting research into the use of the hand-held device as a controller for web-

enabled 3D simulation systems also appears to be an interesting area to continue research

outlined in [Watsen et, al. 1999].

F. SUMMARY

The reader has been exposed to the use of real time 3D graphics in

ParallelGraphics Pocket Cortona VRML renderer on the DELL Axim X-5 hand-held, use

of XSLT to create ‘Pocket Friendly’ versions of X3D and Vrml97 content, and some

areas for future work. Use of handheld 3D graphics can aid in operator recognition of

213

unfamiliar landmarks from a sea-level perspective. Addition of existing GPS capabilities

may provide further significant assists for AT/FP operators.

214

APPENDIX O. APPLICATION DISTRIBUTION AND SOURCE
CODE ACCESS

All application source code, examples, and binary distribution are available via

password protected access at:

http://terra.cs.nps.navy.mil/SavageProjects/cd2/SavageProjects/harney/Harney.html

(accessed March 2003) . Additionally, access to source code and distribution may be

obtained from:

Dr. Don Brutzman: Brutzman@nps.navy.mil;

Research Professor John Hiles; jhiles@mindspring.com; or

Research Associate Curt Blais; clblais@nps.navy.mil.

Unrestricted access to versions of various components of the various 3D models

developed during the conduct of this thesis are available as part of the SAVAGE 3D

model distribution online at: http://web.nps.navy.mil/~brutzman/Savage/toc.html

(accessed February 2003) and as part of the NPSNET-V distribution online at

http://www.sourceforge.net/projects/npsnetv . (accessed March 2003)

215

THIS PAGE INTENTIONALLY LEFT BLANK

216

LIST OF REFERENCES

 [Alexander 1977] Alexander, Christopher, A Pattern Language: Towns,

 Buildings, Construction, Oxford University Press, 1977.

[Alexander 1979] Alexander, Christopher, The Timeless Way of Building, Oxford

University Press, 1979.

[Blais 2002a] Blais, C.L., Brutzman, D., Harney, J.W., & Weekley, J.

Emerging Web-Based 3D Graphics for Education and Experimentation.

In Proceedings, 2002 Interservice/Industry Training, Simulation, and

Education Conference (Orlando, Florida, December 02-05). Available at

http://www.movesinstitute.org/Publications/191_0816.pdf (accessed March 2003)

[Blais 2002b] Blais, C.L., Brutzman, D., Harney, J.W., & Weekley, J. (2002b).

Web-based 3D reconstruction of scenarios for limited objective

experiments. In Proceedings of the 2002 Summer Computer Simulation

Conference, San Diego, 17-19 July. Available at

http://www.movesinstitute.org/Publications/S192_Blais.pdf (accessed March 2003)

[Blais 2002c]Blais, C.L., Brutzman, D., Harney, J.W. & Hiles, J. Analyzing

 anti-terrorist tactical effectiveness for force protection using X3D

graphics and agent based simulation. Presented at 70th MORS

Symposium, Military Operations Research Society Conference. (Ft.

Leavenworth, Kansas, June 16-18).

217

[Bourg 2002] Bourg, David M., Physics for Game Developers, Oreilly &

Associates, Inc., Sebastopol, California, 2002.

[Brutzman 1998] Brutzman, D. (1998, June). The virtual reality modeling

language and Java. Communications of the ACM, 41:6, 57-64.

[Burke 2001] Burke, Eric M, Java and XSLT, Oreilly& Associates,

2003, Sebastopol, California.

[CCOI 2001] USS Cole Court Of Inquiry, 2001. Previously online at:

http://www.foia.navy.mil/usscole/index.html.

(Accessed January 2002) (Removed February 2002)

[Darken 2002] MV4202 Human Computer Interaction, Course Notes 2002,

Rudolph Darken.

[DELL 2002] Dell Axim X5 User’s Guide, 2002, Dell Computer Corporation,

http://www.dell.com (accessed February 2003).

[Dickie 2002] Dickie, Alistair (2002), Modeling Robot Swarms Using Agent

-Based Simulation, Master’s Thesis, Naval Postgraduate School. Available at:

http://www.movesinstitute.org/Theses/AlistairDickie.pdf (accessed March 2003)

218

[DTED 1996] Performance Specification, Digital Terrain Elevation Data (DTED),

19 April 1996, MIL-PRF—89020A, Defense Mapping Agency, Fairfax,

Virginia, US.

[Eisenberg 2002] Eisenberg, J. David, SVG Essentials, 2002, O’Reilly &

Associates, INC., Sebastopol, California.

[Fauconnier 2001] Fauconnier, Gilles, Turner, Mark, Conceptual Integration

Networks, published in Cognitive Science, 22(2) 1998, 133-187, Cognitive Science

Society, Inc. Current updated and expanded web version 20 February 2001, available at

http://www.wam.umd.edu/~mturn/WWW/blending.html (accessed February 2003).

[Ferber 99] Ferber, J., Multi-Agent System, An Introduction to Distributed

Artificial Intelligence. Addison-Wesley Publishers, 1999.

[Gomez 2000]Gomez, Miguel, “Integrating the Equations of Rigid Body

Motion”, from Game Programming Gems, Charles River Media, Inc,

Rockland, Massachusettes, 2000.

[Grand 1998] Grand, Mark. Patterns in Java, Volume 1. John Wiley & Sons,

Inc., New York, 1998.

219

[GUARDIAN 2002] “Al-Qaida Suspected in Tanker Explosion”, Guardian

Unlimited, 7 October 2002. (accessed March 2003)

http://www.guardian.co.uk/alqaida/story/0%2C12469%2C805997%2C00.html.

[Hiles 2002] MV4015 Autonomous Agents, Course Notes 2002, John Hiles.

[Hiles 2003] Hiles, John, draft white paper, Integrated Asymmetric Goal

Organization (IAGO): A Multi-agent Model of Conceptual Blending,

2003.

[Hunsberger 2001] Hunsberger, M. G. (2001, June). 3D Visualization of

Tactical Communications for Planning and Operations Using Virtual Reality Modeling

Language (VRML) and Extensible 3D (X3D). Monterey, California: Naval Postgraduate

School.

[Hundt 2002] Spartan Scout, Advanced Technology Concept Demonstration,

FY 2002 ACTD, September 2002.

[Hunter 2001] Hunter, et. al., David; Cagle, Kurt; Dix, Chris;

Kovack, Roger; Pinnock, Jonathan, Rafter, Jeff; Beginning XML (2nd

Edition), 2001, Wrox Press, Birmingham, UK.

220

[INTEL 2002] Press Release, 23 July 2002, “Intel Establishes Working

Group To Create Standards For 3D On The Web”, San Antonio, Texas.

http://www.intel.com/pressroom/archive/releases/20020723corp.htm (accessed October

2002).

[JNLPSPEC 2001] Java Network Launching Protocol and API Specification,

(JSR-56), 2001, version 1.0.1, Sun Microsystems.

[JP1 2002] Joint Publication 1-02, DoD Dictionary of Military and Associated

Terms.

[JMOCN 2002] Naval War College Course Notes, Joint Military Operations,

Segment 4.3 Combating Terrorism, 2002.

[JV2020 2000] Shelton, H., Joint Vision 2020, 2000

[Lamonde 2000] Lamonde, Andre, Tricks of the Windows Game Programming

Gurus, Fundamentals of 2D and 3D Game Programming, Sams,

Indianapolis, Indiana, 1999.

[Lamonde 2001] Lamonde, Andre, Tricks of the Java Game Programming

Gurus, Sams, Indianapolis, Indiana, 2000.

221

[LINUX 2002] Goodman, Adam M., “As the Linux World Turns”, Linux

 Magazine, October 2002, www.linuxworld.com (accessed January

 2003).

[Kay 2001] Kay, Michael, XSLT Programmer’s Reference 2nd Edition, Wrox

Press, 2001, Birmingham, United Kingdom.

[Mangano 2003] Mangano, Sal, XSLT Cookbook, O’Reilly & Associates,

2003, Sebastopol, California.

[Mnif 2003] Mnif, Khaled, Using XML/HTTP to Store, Serve, and Annotate

Tactical Scenarios for X3D Operational Visualization and Anit-Terrorist

Training, 2003, Master’s Thesis, Naval Postgraduate School.

[Murray 2000] Murray, M. W., & Quigley, J. M. (2000, June).

Automatically Generating a Distributed 3D Battlespace Using USMTF and XML-MTF

AIR Tasking Order, Extensible Markup Language (XML) and Virtual Reality Markup

Language (VRML). Naval Postgraduate School.

[Nicklaus 2001] Nicklaus, S. (2001). Scenario Authoring and

Visualization for Advanced Graphical Environments. Master’s Thesis,

Naval Postgraduate School. Available at:

http://www.movesinstitute.org/Theses/ShaneNicklaus.pdf (accessed March 2003)

222

[Nielsen 2000] Nielsen, Jakob, Designing Web Usability, New Riders Publishing,

Indianapolis, Indiana, 2000.

[Neushul 2003] Neushul, James (2003) Draft Master’s Thesis, Naval

Postgraduate School.

[Osborne 2002] Osborne, Brian (2002), An Agent-Based Architecture for

Generating Interactive Stories, Dissertation, Naval Postgraduate School. Available at:

http://www.movesinstitute.org/Theses/OsbornDissertation.pdf (accessed March 2003)

[OSI 2002] Open Source Initiative, Non-Profit Corporation, 2002, “Definition

and Rationale”, http://www.opensource.org (accessed September

2002).

[PARALLELGRAPHICS 2003] Pocket Cortona Release and User’s Notes,

created 2001, revised through 2003, online at

http://www.parallelgraphics.com/products/cortonace/notes (accessed

February 2003).

[SUN 2003] Sun Microsystems, Java 2 SDK Documentation, Version 1.4.1, 2003.

223

[SUNWEB 2003] The Java Web Services Tutorial, A beginners guide to

developing Web services and Web applications on the Java Web

Services Developers Pack, Sun Microsystems, 2002.

[USNA 2000] ES310 Introduction to Naval Weapons Engineering Course Notes,

U.S. Naval Academy, 28 January 1998, http://www.fas.org/man/dod-

101/navy/docs/es310/syllabus.html (accessed March 2003).

[USNI 2001] “Twenty Four Hours to Go” The USS McCampbell (DDG-85)

prepares for her launch, U.S. Naval Institute, April 2001, Volume

127/4/1, 178, Photograph by Steven Footer, (accessed March 2003)

http://www.usni.org/Proceedings/Articles01/PROphotocontest4.html .

[X3D 2002] Web3D Consortium Press Release, 23 July 2002, “Web3D

Consortium Releases X3D Final Working Draft”, San Antonio, Texas.

[X3DSPEC 2002] X3D Specification (Draft), http://www.web3d.org/specs/

(accessed September 2002).

[XMSF 2002] Brutzman, D., Morse, K., Pullen, M., Zyda, M., “XMSF 2002 Findings

and Recommendations Report”, Technical Challenges Workshop and Strategic

Opportunities Symposium, 22 October 2002. Available at:

http://www.movesinstitute.org/private/tmp/501/Temporary%20Items/Library/Apache2/ht

docs/xmsf/XmsfWorkshopSymposiumReportOctober2002.pdf (accessed February 2003)

224

[XMSF 2002a] Extensible Modeling and Simulation Website, available at:

http://www.movesinstitute.org/xmsf/xmsf.html (accessed March 2003)

[Watsen, et al. 1999] Watsen, K., Darken, R., Capps, M., “A Handheld Computer

as an Interaction Device to a Virtual Environment”, Proceedings of the

International Projection Technologies Workshop, Stuttgart, Germany,

May 10-11, 1999. Available at:

http://www.movesinstitute.org/darken/publications/PalmPilot.pdf (accessed March 2003)

[Wellbrink 2003] Wellbrink, Joerg, Darken, Rudy (2003). Modeling

Reduced Human Performance as Complex Adaptive System. Draft Paper submitted to:

Behavior Representation in Modeling and Simulation Scottsdale, Arizona SISO.

[ZEROG 2002] Zero G Software, Install Anywhere 5 User Guide, 2002, San

Francisco, California.

225

THIS PAGE INTENTIONALLY LEFT BLANK

226

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Fort Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School

 Monterey, California

3. Admiral Robert J. Natter

Commander U.S. Fleet Forces Command,
Commander U.S. Atlantic Fleet
Norfolk, Virginia

4. Vice Admiral Mike Bucchi

Commander U.S. Third Fleet
San Diego, California

5. Vice Admiral Timothy W. LaFleur

Commander U.S. Naval Surface Forces Pacific
San Diego, California

6. Vice Admiral Cutler Dawson, Jr.

Commander U.S. Second Fleet / NATO Striking Fleet Atlantic
Norfolk, Virginia

7. Rear Admiral Terrance T. Etnyre

Commander U.S. Naval Surface Forces Atlantic
Norfolk, Virginia

8. Rear Admiral Ronald A. Route

Commander, Naval Warfare Doctrine Command
Newport, Rhode Island

9. Rear Admiral Henry G. Ulrich, III

Director, Surface Warfare Division (OPNAV N76)
Washington, D.C.

10. Ms. Celia Metz

SPAWAR, Homeland Defense Office Chairman
San Diego, California

227

11. Professor Michael J. Zyda,
Chair, Modeling, Virtual Environments and Simulation (MOVES)
Naval Postgraduate School
Monterey, California

12. Associate Professor Don Brutzman
Naval Postgraduate School
Monterey, California

13. Research Professor John Hiles

Naval Postgraduate School
Monterey, California

14. Research Associate Curt Blais

Naval Postgraduate School
Monterey, California

15. Research Associate Doug Horner
Naval Postgraduate School
Monterey, California

16. Research Associate Jeff Weekley

Naval Postgraduate School
Monterey, California

17. Professor Gordon Schacher
 Naval Postgraduate School

Monterey, California

18. Professor Don MacGregor

Naval Postgraduate School
Monterey, California

19. Research Associate Andrezj Kapolka

Naval Postgraduate School
Monterey, California

20. Research Associate Barb Helfer
 Naval Postgraduate School

Monterey, California

21. Jeff Kline, CAPT USN

Naval Postgraduate School
Monterey, California

228

22. James Harney, LT USN
Naval Postgraduate School
Monterey, California

23. Dr. Roy S. Harney, Jr.

Nicholasville, Kentucky

24. Alan Hudson

Yumetech Inc.
Seattle, Washington

25. Justin Couch

Yumetech Inc.
Seattle, Washington

26. Rick Goldberg
Aniviza Inc.
Santa Clara, California

27. Ray Waters

Naval Warfare Doctrine Command, AT/FP Warfare Innovation Team
Newport, Rhode Island

28. Robert Gregory

AT/FP School, EWTGLANT
Chesapeake, Virginia

